
Programmer's Manual
TiePie Dll's

for: TP112
TP208
TP508
TP801 AWG ISA
TP801 AWG PCI
TE6100
TiePieSCOPE HS508
TiePieSCOPE HS801 AWG
Handyprobe HP2
Handyscope 2
Handyscope 3 AWG

Revision 1.10

Table of contents 1

Table of contents

Table of contents . 1

How can I... 5
Perform my first measurement . 5
Understand the error codes . 6

Error codes . 6
Open / Close the instrument . 7

Search and Initialize the Instrument 7
Close the Instrument . 7

Get information about my instrument . 8
Get the calibration date . 8
Get the instrument serial number 8
Determine the available input sensitivities 9
Determine the available input resolutions 9
Get the maximum sampling frequency 10
Get the maximum record length 10
Check for availability of DC hardware offset adjustment . 10
Check for a square wave generator 11
Check for a function generator . 11
Get the maximum amplitude of the function generator . 11

Perform a measurement . 12
Start the measurement . 12

Retrieve the data . 13
Get all measurement data in Volts 13
Get one sample of the measurement data, in Volts 13
Get all measurement data, binary 14
Get one sample of the measurement data, binary 14
Get all digital input values . 15
Get one sample of the digital input values 15

Advanced measurement routines . 16
Start a measurement . 16
Check if the hardware is measuring 16
Abort a running measurement . 17
Read the trigger status . 17
Read the measurement status . 18
Retrieve the measured data . 18

2 Tabel of contents

Example of use of the routines . 19
Controlling the input resolution . 20

Set the input resolution . 20
Get the currrent input resolution 20

Control which channels are measured . 21
Get the current measure mode . 21
Set the measure mode . 21

Control the time base . 22
Get the current record length . 22
Set the record length . 22
Get the current number of post samples 23
Set the number of post samples . 23
Get the current sampling frequency 24
Set the sampling frequency . 24
Get the sample clock status . 25
Set the sample clock status . 25

Control the analog input channels . 26
Get the current input sensitivity . 26
Set the input sensitivity . 26
Get the current auto ranging status 27
Set the auto ranging status . 27
Get the current input coupling . 28
Set the input coupling . 28
Get the current DC level value . 29
Set the DC level value . 29

Control the trigger system . 30
Get the current trigger source . 30
Set the trigger source . 30
Get the current trigger mode . 31
Set the trigger mode . 31
Get the current trigger level . 32
Set the trigger level . 32
Get the current trigger hysteresis 33
Set the trigger hysteresis . 33
Select the PXI external trigger signals 34
Get the current used PXI external trigger signals 34
Set the PXI external trigger slopes 35
Get the current PXI external trigger slopes 35
Get the current trigger timeout value 36
Set the trigger timeout value . 36

Table of contents 3

Control the digital outputs . 37
Set the digital outputs . 37
Get the current status of the digital outputs 37

Control the Square Wave generator . 38
Get the current square wave generator frequency 38
Set the square wave generator frequency 38

Control the Arbitrary Waveform Generator 39
Set the generator signal type . 39
Get the current generator signal type 39
Set the generator amplitude . 40
Get the current generator amplitude 40
Set the generator DC Offset . 41
Get the current generator DC Offset 41
Set the generator signal symmetry 42
Get the current generator signal symmetry 42
Set the generator frequency . 43
Get the current generator frequency 44
Fill the function generator waveform memory 45
Set the generator output state . 46
Get the current generator output state 46

4 Tabel of contents

How can I... 5

How can I...

Perform my first measurement

Before performing a measurement, the instrument must first be initialized,
using the routine InitInstrument. If this routine returns a non-zero value the
initialization has failed and it is not possible to perform any measurements.

After initializing the hardware you can:
- modify the measurement settings
- start a measurement
These two actions can be executed in any order and as often as required.

Finally the routine ExitInstrument has to be called to deactivate the instru-
ment and free any used resources.

Example in Pascal code:

const E_NO_ERRORS = 0;

if InitInstrument = E_NO_ERRORS then {initialize instrument}
begin {and allocate resources}
 while MeasureMore do
 begin
 if ChangeSettings then
 begin
 OldFreq := GetFrequency; {query a setting}
 SetFrequency((OldFreq* 10)-1000); {change a setting}
 end; { if }
 if StartMeasurement = E_NO_ERRORS then {measure}
 begin
 for Sample := 0 to GetRecordLengh do
 begin {retrieve data}
 GetOneMeasurement(Data1[Sample], Data2[Sample]);
 end; { for }
 end; { if }
 end; { while }
 ExitInstrument; { free resources}
end
else
begin
 writeln('Error: No hardware found...');
end; { else }

6 How can I...

Legend:
bold = reserved words
123 = number
italic = comment

Understand the error codes

Error codes

Code Names Code Values

Hexadecimal Binairy
E_INVALID_VALUE = 0x0020; /*0000000000100000*/
E_INVALID_CHANNEL = 0x0010; /*0000000000010000*/
E_NO_GENERATOR = 0x0008; /*0000000000001000*/
E_NOT_SUPPORTED = 0x0004; /*0000000000000100*/
E_NOT_INITIALIZED = 0x0002; /*0000000000000010*/
E_NO_HARDWARE = 0x0001; /*0000000000000001*/
E_NO_ERRORS = 0x0000; /*0000000000000000*/

How can I... 7

Open / Close the instrument

Search and Initialize the Instrument

word InitInstrument (word wAddress);

Descriptions: Initialize the hardware of the instrument. Set default measu-
rement settings, allocate memory and obtain the calibration
constants etc.
Parallel port connected instruments, USB instruments and
PCI bus instruments detect the hardware by themselves and
ignore the address parameters.

Input: wAddress The hardware address of the instrument
should be passed to this routine.

Output: Returnvalue E_NO_ERRORS;
E_NO_HARDWARE

Note All instruments have their calibration constants in internal, non-vola-
tile memory, except for the TP208 and TP508. These have to be
calibrated using internal routines. This is done automaticallly at first
startup everyday. Some relays will begin to click.

Close the Instrument

word ExitInstrument (void);
Description: Close the instrument. Free any allocated resources and me-

mory, place the relays in their passive state, etc.
Input: -
Output: Returnvalue E_NO_ERRORS;

E_NOT_INITIALIZED

8 How can I...

Get information about my instrument

Get the calibration date

word GetCalibrationDate (dword *dwDate);

Description: This routine returns the calibration date of the instrument.
The date is encoded in a packed 32 bit variable:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|<-------------------->|<--------------------->|<---------------------------------->|
| day (8 bits) | (month (8 bits) | year (16 bits) |

Example decoding routine in C/C++:

day = number >> 24; /* highest 8 bits */
month = (number >> 16) & 0xFF; /* middle 8 bits */
year = number & 0xFFFF; /* lowest 16 bits */

Input: -
Output: dwDate The calibration date

Returnvalue E_NO_ERRORS
E_NOT_SUPPORTED

Get the instrument serial number

word GetSerialNumber (dword *dwSerialNumber);

Description: This routine returns the Serial Number of the instrument.
This number is hardcoded in the hardware. TP112, TP208
and TP508 do not have a serial number in the instrument.

Input: -
Output: dwSerialNumber the serial number

Returnvalue E_NO_ERRORS
E_NOT_SUPPORTED

How can I... 9

Determine the available input sensitivities

word GetAvailableSensitivities(double *dSensitivities);

description: This routine retrieves the available input sensitivities from the
hardware and stores them in an array.
dSensitivities is an 20 elements large array. The caller must
ensure that there is enough space in the arrays to contain the
data. Therefor both the arrays must be at least

20 * sizeof(double)
At return, all elements containing a non-zero value, contain
an input sensitivity. This is a full scale value. So if an element
contains the value 4.0, the input sensitivity is 4 Volt full scale,
enabling to measure input signals from -4 Volt - +4 Volt.

input: -
output: dSensitivities Return address for the array of input

sensitivities
Returnvalue E_NO_ERRORS

Determine the available input resolutions

word GetAvailableResolutions(double *dResolutions);

description: The Handyscope 3 supports different, user selectable input
resolutions. This routine retrieves the available input resolu-
tions from the hardware and stores them in an array.
dResolutions is an 20 elements large array. The caller must
ensure that there is enough space in the arrays to contain the
data. Therefor both the arrays must be at least

20 * sizeof(double)
At return, all elements containing a non-zero value, contain
an input resolution in number of bits.

input: -
output: dResolutions Return address for the array of input

sensitivities
Returnvalue E_NO_ERRORS

10 How can I...

Get the maximum sampling frequency

dword GetMaxSampleFrequency(void);

Description: The different instruments have different maximum sampling
frequencies. This routine queries the maximum sampling
frequency.

Input: -
Output: Returnvalue The maximum sampling frequency the instru-

ment supports in Hz.

Get the maximum record length

dword GetMaxRecordLength(void);

Description: The different instruments have different record lengths. This
routine queries the maximum available record length per
channel, in samples.

Input: -
Output: Returnvalue The maximum record length the instrument

supports in number of samples.

Check for availability of DC hardware offset adjustment

word GetDCLevelStatus(void);

Description: Some instruments support DC Hardware offset adjustment.
This routine checks if the DC Level is supported.

Input: -
Output: Returnvalue E_NO_ERRORS

E_NOT_SUPPORTED

How can I... 11

Check for a square wave generator

word GetSquareWaveGenStatus(void);

Description: Some instruments have a built-in square wave generator,
the HS508 for example. This routine checks the presence of
the generator.

Input: -
Output: Returnvalue E_NO_ERRORS

E_NO_GENERATOR

Check for a function generator

word GetFunctionGenStatus(void);

Description: The TiePieSCOPE HS801, TP801 and Handyscope 3 can
have a built-in arbitrary waveform generator. When this
function returns E_NO_GENERATOR, the HS801, TP801
or Handyscope 3 is equipped with a simple square wave
generator.

Input: -
Output: Returnvalue E_NO_ERRORS

E_NO_GENERATOR

Get the maximum amplitude of the function generator

word GetFuncGenMaxAmplitude(double *dAmplitude);

Description: The maximum output voltage for the TiePieSCOPE HS801
and Handyscope 3 generator is 12 Volt, the maximum out-
put voltage for the TP801 generator is 10 Volt. This routine
determines the maximum voltage.

Input: -
Output: dAmplitude The maximum amplitude the generator sup-

ports.
Returnvalue E_NO_ERRORS

E_NO_GENERATOR

12 How can I...

Perform a measurement

Start the measurement

word StartMeasurement (void);

Description: This routine tells the hardware to perform a single measure-
ment. The measurement is initiated, and then the routine
will wait until the hardware is ready. When the hardware is
ready, the measured data is transferred from the hardware
acquisition memory into the computer memory, inside the
DLL.

Input: -
Output: Returnvalue E_NO_ERRORS

E_NOT_INITIALIZED
Remark: Perform a measurement. One (software) measurement

equals a record_length number of hardware-measurements.
So the hardware will fill it’s internal buffer. This routine will
wait until the hardware is done.

How can I... 13

Retrieve the data

Get all measurement data in Volts

word GetMeasurement (double *dCh1, double *dCh2);

Description: This routine transfers the measured data from the acquisition
memory in the DLL into the memory in the application. For
each sample, the value in Volts is calculated.
dCh1 and dCh2 are both array. The caller must ensure that
there is enough space in the arrays to contain the data. The-
refor both the arrays must be at least

RecordLength * sizeof(double)
Input: -
Output: dCh1 The array to which the data of channel 1

should be passed.
dCh2 The array to which the data of channel 2

should be passed.
Returnvalue E_NO_ERRORS

Get one sample of the measurement data, in Volts

word GetOneMeasurement (dword wIndex, double *dCh1, double *dCh2);

Description: This routine transfers a single sample per channel from the
acquisition memory in the DLL into the memory of the appli-
cation. The value in Volts is calculated for each sample.

Input: wIndex The index of the measured data point.
Output: dCh1 Return address for the measured data from

channel 1.
dCh2 Return address for the measured data from

channel 2.
Returnvalue E_NO_ERRORS

14 How can I...

Get all measurement data, binary

word GetMeasurementRaw (word *wCh1, word *wCh2);

Description: This routine transfers the measured data from the acquisition
memory in the DLL into the memory in the application. The
measured data is returned in binary values. A value of 0 cor-
responds to -Sensitivity, 32767 corresponds to 0 and 65535
to +Sensitivity in Volts. wCh1 and wCh2 are arrays. The
caller must ensure that there is enough space in the arrays to
contain the data. Therefor the arrays must be at least

RecordLength * sizeof(word)
Input: -
Output: wCh1 The array to which the measured data of chan-

nel 1 should be passed.
wCh2 The array to which the measured data of chan-

nel 2 should be passed.
Returnvalue E_NO_ERRORS

Get one sample of the measurement data, binary

word GetOneMeasurementRaw(dword wIndex, word *wCh1, word *wCh2);

Description: This routine transfers a single sample per channel from the
acquisition memory in the DLL to the memory of the appli-
cation. The measured data is returned in binary values. A
value of 0 corresponds to -Sensitivity, 32767 corresponds to
0 and 65535 to +Sensitivity in Volts.

Input: wIndex The index of the measured data point
Output: wCh1 Return address for the measured data from

channel 1
wCh2 Return address for the measured data from

channel 2
Returnvalue E_NO_ERRORS

How can I... 15

Get all digital input values

word GetDigitalInputValues(word *wValues);

Desription: The TP112 has eight digital inputs, which are sampled simul-
taneously with the analog input channels.
This routine transfers the measured digital values from the
memory in the DLL into the memory in the application. The
measured data is returned in binary values. Each bit in the
digital data words represents a digital input. wValues is an
array. The caller must ensure that there is enough space in
the array to contain the data. Therefor the array must be at
least

RecordLength * sizeof(word)
Input: -
Output: Returnvalue E_NO_ERRORS

E_NOT_SUPPORTED

Get one sample of the digital input values

word GetOneDigitalValue(word wIndex; word *wValue);

Description: This routine transfers a single digital input value from the
memory in the DLL to the memory of the application.

Input: wIndex The index of the measured data point, relative
to the trigger point (negative for pre samples,
positive for post samples)

Output: wValue Return address for the digital input value.
Returnvalue E_NO_ERRORS

E_NOT_SUPPORTED

16 How can I...

Advanced measurement routines

The previously mentioned routine StartMeasurement takes care of a
complete measurement. It sets up the hardware to perform a measure-
ment and then starts the hardware measurement. Then it will wait for the
measurement to be ready. In the mean while, it checks the triggered flag
of the hardware and checks if a trigger time out has occured. If that has
happened, it will force a trigger. Then it will wait for the measurement to
be ready. When the measurement is ready, the measured data will be
transferred from the hardware to memory inside the DLL. While doing
that, it will check if auto range is required. When all data is transferred and
checked, the routine will end.
The application can then transfer the data from the DLL memory to it's
own memory and process it.

For certain applications it might be usefull to split up this process into indivi-
dual steps. The following routines enable this. When these routines are
used, no Trigger timout is available.

Start a measurement

word ADC_Start;

Description: This routine writes any new instrument setting information
to the hardware and then starts the measurement. If the
hardware is already measuring, this measurement is aborted.
Previous measured data is lost

Input: -
Output: Returnvalue E_NOT_INITIALIZED

E_NO_ERRORS

Check if the hardware is measuring

word ADC_Running;

Description: This routine checks if the hardware is currently measuring
Input: -
Output: Returnvalue 0 =not measuring

1 = measuring

How can I... 17

Abort a running measurement

word ADC_Abort;

Description: This routine aborts a running measurement. Any measured
data is lost. It is not required to abort a running measure-
ment before starting a new one, StartMeasurement does this
already.

Input: -
Output: Returnvalue E_NOT_INITIALIZED

E_NO_ERRORS

Read the trigger status

word ADC_Triggered;

Description: This routine reads the trigger status from the hardware.
Input: -
Output: Returnvalue 0 = not triggered

1 = Ch1 caused trigger
2 = Ch2 caused trigger
4 = External input caused trigger

Remark: Returnvalue can be a combination of indicated values.

18 How can I...

Read the measurement status

word ADC_Ready;

Description: This routine checks if the measurement is ready or not.
Input: -
Output: Returnvalue 0 = not ready

1 = ready

Retrieve the measured data

word ADC_GetData (word *wCh1, word *wCh2);

Description: This routine transfers the measured data from the acquisition
memory in the hardware via the dll into the memory in the
application. The measured data is returned in binary values.
A value of 0 corresponds to -Sensitivity, 32767 corresponds
to 0 and 65535 to +Sensitivity in Volts. wCh1 and wCh2
are arrays. The caller must ensure that there is enough space
in the arrays to contain the data. Therefor the arrays must be
at least

RecordLength * sizeof(word)
Input: -
Output: wCh1 The array to which the measured data of chan-

nel 1 should be passed.
wCh2 The array to which the measured data of chan-

nel 2 should be passed.
Returnvalue E_NO_ERRORS

How can I... 19

Example of use of the routines

To use the advanced measurement routines, your application could look
like the following:

.

.
ADC_Start;
while bContinue do
begin
 if ADC_Ready = 1 then
 begin
 ADC_Getdata(@Ch1WordArray, @Ch2WordArray);
 ADC_Start;
 ApplicationProcessData;
end; { if }
.
.

20 How can I...

Controlling the input resolution

The Handyscope 3 supports a number of different input resolutions.

Set the input resolution

word SetResolution(byte byResolution);

Description: This routine sets the input resolution of the hardware.
Use GetAvailableResolutions() to determine which resoluti-
ons are available.

Input: byResolution the new resolution, in bits
Output: Returnvalue E_NO_ERRORS

E_INVALID_VALUE
E_NOT_SUPPORTED

Remark: When setting a new input resolution, the maximum sampling
frequency of the hardware changes as well.
Use GetMaxSampleFrequency() to determine the new
maximum sampling frequency.

Get the currrent input resolution

word GetResolution (byte *byResolution);

Description: This routine retrieves the currently set input resolution in
bits.

Input: -
Output: byResolution the return address for the resolution

Returnvalue E_NO_ERRORS

How can I... 21

Control which channels are measured

Get the current measure mode

word GetMeasureMode(byte *byMode);

Description: This routine returns the current Measure Mode:
 1 : Ch1 the signal at channel 1 is measured
 2 : Ch2 the signal at channel 2 is measured
 3 : Ch1 & Ch2 the signals at channel 1 and 2 are mea-

sured simultaneously
Input: -
Output: byMode The return address for the Measure Mode.

Returnvalue E_NO_ERRORS
E_INVALID_VALUE

Set the measure mode

word SetMeasureMode(byte byMode);

Description: This routine changes the Measure Mode, see also GetMeasu-
reMode.

Input: byMode The new measure mode (1, 2 or 3).
Output: Returnvalue E_NO_ERRORS

E_INVALID_VALUE

22 How can I...

Control the time base

Get the current record length

dword GetRecordLength(void);

Description: This routine returns the total number of points to be digiti-
zed. The number of pre samples (number of samples to
measure before the trigger occured) is calculated like this:
PreSamples = RecordLength - PostSamples.

Input: -
Output: Returnvalue The total number of points to be digitized per

channel.

Set the record length

word SetRecordLength(dword wTotal);

Description: This routine sets the total number of points to be digitized.
The maximum record length can be determined with the-
routine GetMaxRecordLength() . The minimum is 0.

Input: wTotal The total number of points to be digitized per
channel.

Output: Returnvalue E_NO_ERRORS
E_INVALID_VALUE

Remark: Setting a record length smaller than the number of post sam-
pels gives an E_INVALID_VALUE error

How can I... 23

Get the current number of post samples

dword GetPostSamples(void);

Description: This routine returns the number of post samples to measure
(the number of samples after the trigger has occured).

Input: -
Output: Returnvalue The current selected number of post samples

to measure.

Set the number of post samples

word SetPostSamples(dword wPost);

Description: This routine sets the number of post samples. This number
must be between 0 and the record length.

Input: wPost The requested number of post samples to me-
asure.

Output: Returnvalue E_NO_ERRORS
E_INVALID_VALUE

Remark: Setting a number of post samples larger than the record
length gives an E_INVALID_VALUE error

24 How can I...

Get the current sampling frequency

dword GetSampleFrequency(void);

Description: This routine returns the current set sampling frequency in
Hz. The minimum/maximum frequency supported is instru-
ment dependent.

Input: -
Output: Returnvalue The current sampling frequency in Hz.

Set the sampling frequency

word SetSampleFrequency(dword *dFreq);

Remarks: The routine sets the sampling frequency. The hardware is
not capable of creating every selected frequency so the har-
dware chooses the nearest allowed frequency to use, this is
the frequency that is returned in dFreq.

Input: dFreq The requested sampling frequency in Hz
Output: dFreq The actual selected sampling frequency in Hz.

Returnvalue E_NO_ERRORS

How can I... 25

Get the sample clock status

word GetExternalClock(word *wMode);

Description: This routine determines whether the sampling clock uses the
internal Crystal oscillator or the external clock input
Only 50 MHz devices support external clock input

Input: -
Output: wMode The status of the internal clock,

0 = clock internal
1 = clock external

Returnvalue E_NO_ERRORS
E_NOT_SUPPORTED

Set the sample clock status

word SetExternalClock(word wMode);

Description: This routine sets the sampling clock mode: is te internal crys-
tal oscillator used or the external clock input?
Only 50 MHz devices support external clock input

Input: wMode 0 = internal clock
1 = external clock

Output: Returnvalue E_NO_ERRORS
E_INVALID_VALUE
E_NOT_SUPPORTED

26 How can I...

Control the analog input channels

Get the current input sensitivity

word GetSensitivity (byte byCh, double *dSens);

Description: This routine returns the current selected full scale input sen-
sitivity in Volts for the selected channel.

Input: byCh The channel whose current Sensitivity is re-
quested (1, 2)

Output: dSens The return address for the sensitivity.
Returnvalue E_NO_ERRORS

E_INVALID_CHANNEL

Set the input sensitivity

word SetSensitivity(byte byCh, double *dSens);

Description: This routine sets the Sensitivity for the selected channel. The
hardware can only deal with a limited number of ranges. The
sensitivity that matches the entered sensitivity best is
used.This is the value that will be returned in dSens.

Input: byCh The channel whose Sensitivity is to be changed
(1, 2)

dSens The new Sensitivity in Volts
Output: dSens Contains the actual set Sensitivity, on return

Returnvalue E_NO_ERRORS
E_INVALID_CHANNEL

How can I... 27

Get the current auto ranging status

word GetAutoRanging(byte byCh, byte *byMode);

Description: This routine returns the current autoranging mode:
0 : autoranging is off
1 : autoranging is on.
If autoranging is on then for a channel the sensitivity will be
automatically adjusted if the input signal becomes too large
or too small.
When a measurement is performed, the data is examined. If
that data indicates another range will provide better results,
the hardware is set to a new sensitivity. The next measure-
ment that is performed, will be using that new sensitivity.
Autoranging has no effect on a current measurement.

Input: byCh The channel whose current Autoranging mode
is requested (1, 2).

Output: byMode Return address for the Autoranging mode.
Returnvalue E_NO_ERRORS

E_INVALID_CHANNEL

Set the auto ranging status

word SetAutoRanging(byte byCh, byte byMode);

Description: This routine selects the autoranging mode:
0 : turn Autoranging off
1 : turn Autoranging on.
See also GetAutoRanging.

Input: byCh The channel whose Autoranging mode has to
be set (1, 2).

byMode The new value for the Autoranging mode.
Output: Returnvalue E_NO_ERRORS

E_INVALID_CHANNEL
E_INVALID_VALUE

28 How can I...

Get the current input coupling

word GetCoupling(byte byCh, byte *byMode);

Description: This routine returns the current signal coupling for the selec-
ted channel:
0 : coupling AC
1 : coupling DC.
In DC mode both the DC and the AC components of the
signal are measured.
In AC mode only the AC component is measured.

Input: byCh The channel whose current coupling is reque-
sted (1, 2)

Output: byMode Return address for the current coupling.
Returnvalue E_NO_ERRORS

E_INVALID_CHANNEL
E_INVALID_VALUE

Set the input coupling

word SetCoupling(byte byCh, byte byMode);

Description: This routine changes the signal coupling for the selected
channel. See also GetCoupling.

Input: byCh The channel whose Coupling is to be changed
(1, 2).

byMode The new coupling for the selected channel (0
or 1).

Output: Returnvalue E_NO_ERRORS
E_INVALID_CHANNEL
E_INVALID_VALUE

How can I... 29

Get the current DC level value

word GetDcLevel(byte byCh, double *dLevel);

Description: This routine returns the current DC Level value for the se-
lected channel. This voltage is added to the input signal befo-
re digitizing. This is used to shift a signal that is outside the
current input range into the input range.

Input: byCh The channel whose DC Level is requested (1,
2)

Output: dLevel Return address for the current DC Level.
Returnvalue E_NO_ERRORS

E_INVALID_CHANNEL
E_NOT_SUPPORTED

Set the DC level value

word SetDcLevel(byte byCh, double dLevel);

Description: This routine is used to change the DC Level for the selected
channel. The DC Level has a minimum of -2*sensitivity and a
maximum of +2*sensitivity. If the sensitivity changes, the DC
level is automatically checked and clipped if neccessary. See
also GetDcLevel.

Input: byCh The channel whose DC Level is to be set (1,
2)

dLevel The new DC Level in Volts
Output: Returnvalue E_NO_ERRORS

E_INVALID_CHANNEL
E_INVALID_VALUE
E_NOT_SUPPORTED

30 How can I...

Control the trigger system

Get the current trigger source

word GetTriggerSource(byte *bySource);

Description: This routine is used to retrieve the current Trigger Source.
The hardware waits for a trigger condition, or a Timeout,
before it starts to measure.
 0 : Ch1Trig Channel 1
 1 : Ch2Trig Channel 2
 2 : ExtTrig a digital external signal
 3 : AndTrig Channel 1 AND Channel 2
 4 : OrTrig Channel 1 OR Channel 2
 5 : NoTrig no source, measure immediately
 6 : PxiExtTrig PXI bus digital trigger signals
 7 : XorTrig Channel 1 XOR Channel 2
 8 : AnaExtTrig an analog external signal

Input: -
Output: bySource The current trigger source.

Returnvalue E_NO_ERRORS
E_INVALID_VALUE

Set the trigger source

word SetTriggerSource(byte bySource);

Description: This routine sets the trigger source, see GetTriggerSource for
the codes of the different sources.

Input: bySource The new trigger source.
Output: Returnvalue E_NO_ERRORS

E_INVALID_VALUE
E_NOT_SUPPORTED

Note Not all instruments support all Trigger Sources. Look at the manual
of your instrument for details, which Trigger Sources your instru-
ment supports. If the Trigger Source is not supported, the error
value E_NOT_SUPPORTED is returned.

How can I... 31

Get the current trigger mode

word GetTriggerMode(byte *byMode);

Description: This routine is used to query the current Trigger Mode.
0 Rising trigger on rising slope
1 Falling trigger on falling slope
2 InWindow trigger when signal gets inside window
3 OutWindow trigger when signal gets outside window
4 TVLine trigger on TV line sync pulse
5 TVFieldOdd trigger on TV odd frame sync pulse
6 TVFieldEven trigger on TV even frame sync pulse

Input: -
Output: byMode The current trigger mode.

Returnvalue E_NO_ERRORS
E_INVALID_VALUE

Set the trigger mode

word SetTriggerMode(byte byMode);

Description: This routine is used to set the Trigger Mode. See also Get-
TriggerSource. Some trigger modes are not available on all
instruments, in that case, the value E_NOT_SUPPORTED
will be returned.

Input: byMode The new trigger mode.
Output: Returnvalue E_NO_ERRORS

E_INVALID_VALUE
E_NOT_SUPPORTED

32 How can I...

Get the current trigger level

word GetTriggerLevel(byte byCh, double *dLevel);

Description: This routine is used to retrieve the Trigger Level of the se-
lected channel. The hardware starts to measure when the
signal passes this level. The routine SetTriggerMode can be
used to select the trigger slope.

Input: byCh The channel whose Trigger Level is to be re-
trieved (1 or 2).

Output: dLevel Return address for the Trigger Level.
Returnvalue E_NO_ERRORS

E_INVALID_CHANNEL

Set the trigger level

word SetTriggerLevel(byte byCh, double dLevel);

Description: This routine is used to set the Trigger Level. The Trigger
Level is valid if it is between -sensitivity and +sensitivity.

Input: byCh The channel whose Trigger Level is to be set
(1 or 2).

dLevel The new Trigger Level in Volts.
Output: Returnvalue E_NO_ERRORS

E_INVALID_CHANNEL
E_INVALID_VALUE

Note The Trigger Level applies only to analog trigger sources, not to
digital trigger sources.

How can I... 33

Get the current trigger hysteresis

word GetTriggerHys(byte byCh; double *dHysteresis);

Description: This routine is used to retrieve the current Trigger Hystere-
sis. The hysteresis is the minimum voltage change that is
required to comply with the trigger conditions. This is used
to minimize the influence of the noise on a signal on the trig-
ger system.

Input: byCh The channel whose Trigger Hysteresis is to be
retrieved (1 or 2).

Output: dHysteresis Return address for the Trigger Hysteresis.
Returnvalue E_NO_ERROR

E_INVALID_CHANNEL

Set the trigger hysteresis

word SetTriggerHys(byte byCh; double dHysteresis);

Description: This routine changes the hysteresis, see also GetTriggerHys.
Input: byCh The channel whose Trigger Hysteresis is to be

set (1 or 2).
dHysteresis The new trigger hysteresis.

Output: Returnvalue E_NO_ERRORS
E_INVALID_VALUE
E_INVALID_CHANNEL

Upper and lower limits of the hysteresis:

Slope Lower limit Upper limit
rising 0 level + sens

falling 0 sens - level

Note The Trigger Hysteresis applies only to analog trigger sources, not to
digital trigger sources.

34 How can I...

The TE6100 has 8 digital external trigger inputs, at the PXI bus, which can
be used to trigger the measurement. It is possible to select which inputs
have to be used and if the inputs have to respond to a rising or a falling
slope.

Select the PXI external trigger signals

word SetPXITriggerEnables(byte byEnables);

Description: This routine determines which of the eight PXI external trig-
ger inputs have to be used. When more than one input is
selected, trigger occurs when one or more inputs become
active (logic OR). Which input state is active, is determined
by the Slopes setting, see next page.

Input: byEnables a bit pattern that defines which inputs
have to be used. Bit 0 represents input
0, bit 1 represents input 1 etc.
When a bit is high, the corresponding
input is used.
When a bit is low, the corresponding
input is not used.

Output: Returnvalue E_NO_ERRORS,
E_NOT_SUPPORTED

Get the current used PXI external trigger signals

word GetPXITriggerEnables(byte *byEnables);

Description: This routine retrieves the currently selected PXI external
trigger inputs.

Input: -
Output: byEnables a bit pattern that defines which inputs

are currently used. See also the routine
SetPXITriggerEnables

Returnvalue: E_NO_ERRORS
E_NOT_SUPPORTED

How can I... 35

Set the PXI external trigger slopes

word SetPXITriggerSlopes(byte bySlopes);

Description: This routine determines for each PXI external trigger input
individually whether it should respond to a falling or a rising
slope.

Input: bySlopes a bit pattern that defines how the slope
settings for each input is set.
Each bit represents an input, bit 0 repre-
sents input 0, bit 1 represents input 1
etc.
When a bit is high, the corresponding
input responds to a rising slope.
When a bit is low, the corresponding
input responds to a falling slope.

Output: ReturnValue E_NO_ERRORS
E_NOT_SUPPORTED

Get the current PXI external trigger slopes

word GetPXITriggerSlopes(byte *bySlopes);

Description: This routines determines how the slope sensitivities for the
PXI external trigger inputs are set.

Input: -
Output: bySlopes a bit pattern that defines how the slope

settings for each input is set.
Each bit represents an input, bit 0 repre-
sents input 0, bit 1 represents input 1
etc.
When a bit is high, the corresponding
input responds to a rising slope.
When a bit is low, the corresponding
input responds to a falling slope.

Returnvalue E_NO_ERRORS
E_NOT_SUPPORTED

36 How can I...

Get the current trigger timeout value

dword GetTriggerTimeOut(void);

Description: This routine is used to query the current Timeout value.
When this Timeout period has elapsed and the hardware
has not seen a trigger, then a trigger is forced so that the
hardware can start to measure. This way it is possible to
measure a signal that has not met the trigger conditions.

Input: -
Output: Returnvalue The current Timeout value in msec.

Set the trigger timeout value

dword SetTriggerTimeOut(dword lTimeout);

Description: This routine sets the Timeout value, see also GetTimeOut.
Input: lTimeout The new timeout value in msec.
Output: Returnvalue E_NO_ERRORS

How can I... 37

Control the digital outputs

Set the digital outputs

word SetDigitalOutputs(byte byValue);

Description: The TP112 is equiped with 8 digital outputs, which can be
set individually.
This routine sets the status of the digital outputs.

Input: byValue the new status of the outputs. Each bit repre-
sents an output.

Output: Returnvalue E_NO_ERRORS
E_NOT_SUPPORTED

Get the current status of the digital outputs

word GetDigitalOutputs(byte *byValue);

Description: This routine gets the current status of the digital outputs.
Input: -
Output: byValue the status of the outputs. Each bit represents

an output.
Returnvalue E_NO_ERRORS

E_NOT_SUPPORTED

38 How can I...

Control the Square Wave generator

Get the current square wave generator frequency

double GetSquareWaveGenFrequency(void);

Description: Some instruments have a built-in generator, the HS508 for
example. This routine returns the generator frequency in
Hz.

Input: -
Output: Returnvalue The generator frequency in Hz.

Remarks: Not all instruments have a square wave generator, use the
routine GetSquareWaveGenStatus() to check if a square
wave generator is available

Set the square wave generator frequency

word SetSquareWaveGenFrequency(double *dFreq);

Remarks: The routine sets the frequency. The hardware is not capable
of using every frequency so the hardware chooses the nea-
rest legal frequency to use, this is the frequency that is retur-
ned in dFreq. See also GetGeneratorFrequency.

Input: dFreq the requested frequency in Hz.
A value "zero" switches the output off

Output: dFreq the frequency that is actually made.
Returnvalue E_NO_ERRORS

E_NO_GENERATOR

Remarks: Not all instruments have a square wave generator, use Get-
SquareWaveGenStatus() to check if a square wave genera-
tor is available

How can I... 39

Control the Arbitrary Waveform Generator

Set the generator signal type

word SetFuncGenSignalType(word wSignalType);

Description: This routine sets the signal type of the function generator.
Input: wSignalType The requested signal type

0 Sine wave
1 Triangular wave
2 Square wave
3 DC
4 Noise
5 Arbitrary signal

Output: Returnvalue: E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

Remark: When Arbitrary is selected, the contents of the function ge-
nerator memory will be "played" continuously. This memory
is used for every signal type, so each time when selecting
Arbitrary, use the function FillFuncGenMemory() to fill the
memory with the requested signal.

Get the current generator signal type

word GetFuncGenSignalType(word *wSignalType);

Description: This routine returns the currently selected signal type.
Input: -
Output: wSignalType The currently selected signal type

See SetFuncGenSignalType for possible
values for wSignalType

Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

40 How can I...

Set the generator amplitude

word SetFuncGenAmplitude(double dAmplitude);

Description: This routine sets the output amplitude of the function gene-
rator in volts. When the requested amplitude is smaller than
zero or larger than the maximum supported amplitude,
E_INVALID_VALUE is returned and the requested value is
ignored.
When signal type DC is selected, the absolute amplitude of
the signal is determined by the amplitude and the polarity is
determined through the DC offset.

Input: dAmplitude the function generator amplitude in Volts:
0 <= value <= MaxAmplitude

Output: Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

Get the current generator amplitude

word GetFuncGenAmplitude(double *dAmplitude);

Description: This routine determines the currently selected amplitude of
the function generator

Input: -
Output: dAmplitude the function generator amplitude in Volts:

0 <= value <= MaxAmplitude
Returnvalue E_NO_ERRORS

E_NO_GENERATOR
E_INVALID_VALUE

How can I... 41

Set the generator DC Offset

word SetFuncGenDCOffset(double dDCOffset);

Description: This routine applies a DC offset to the output signal. The
value is entered in Volts.
When signal type DC is selected, the DC offset value is used
to determine the polarity of the output signal. A value >= 0
Volt results in a positive output signal, a value < 0 Volt results
in a negative output signal. The amplitude of the DC signal is
determined through the Amplitude value.

Input: dDCOffset the requested offset in Volts:
-MaxAmpl <= value <= +MaxAmpl

Output: Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

Get the current generator DC Offset

word GetFuncGenDCOffset(double *dDCOffset);

Description: This routine determines the currently selected DC offset
value of the function generator

Input: -
Output: dDCOffset the currently selected DC Offset value

Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

42 How can I...

Set the generator signal symmetry

word SetFuncGenSymmetry(double dSymmetry);

Description: This routine sets the symmetry of the output signal. The
symmetry can be set between 0 and 100. With a symmetry
of 50, the positive part of the output signal and negative part
of the output signal are equally long. With a symmetry of 25,
the poitive part of the output signal takes 25% of the total
period and the negative part takes 75% of the total period.
With signal types DC, Noise and Arbitrary, the symmetry
value is ignored.

Input: dSymmetry The requested symmetry value:
0 <= value <= 100

Output: Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

Get the current generator signal symmetry

word GetFuncGenSymmetry(double *dSymmetry);

Description: This routine retrieves the currently selected symmetry of the
output signal.

Input: -
Output: dSymmetry the current symmetry value

Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

How can I... 43

Set the generator frequency

word SetFuncGenFrequency(double *dFrequency);

Description: When signal type Sine, Triangular, Square or Noise is selec-
ted (DDS mode), this routine sets the frequency of the out-
put signal of the function generator.
When signal type Arbitrary is selected, the frequency settings
behaves slightly different. When 1024 samples are loaded
into the waveform memory (DDS mode), this routine sets
the frequency of the output signal. When 65536 samples are
loaded into the waveform memory (linear mode), this routi-
ne sets the frequency of the sampling clock of the function
generator. Only a limited number of frequencies are availa-
ble.

Input: dFrequency DDS mode: the requested frequency of the
output signal:
0.001 <= dFrequency <= 2,000,000
Linear mode: the requested frequency of
the sampling clock in 15 steps:

38.1, 610, 2441,
9765, 39062, 78125,
156250, 321500, 625000,
1250000, 2500000, 5000000,
10000000, 25000000, 50000000

Output: dFrequency the hardware can not support any arbitrary
frequency within the available range. The
value that was actually selected is returned.

Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

44 How can I...

Get the current generator frequency

word GetFuncGenFrequency(double *dFrequency);

Description: This routine determines the currently set frequency.
Input: -
Output: dFrequency The currently set frequency in Hz

Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

How can I... 45

Fill the function generator waveform memory

word FillFuncGenMemory(dword wNrPoints; word *wFuncGenData);

description: This routine fills the function generator waveform memory
with user defined data.
The generator can operate in two different modes: DDS and
Linear. When operating in DDS mode, 1024 samples must
be loaded. These 1024 samples will form one period of the
output signal. When operating in Linear mode, the maxi-
mum record length samples (depends on the instrument,
e.g. 65536 or 131072) must be loaded. These samples will
form one period of the output signal.
The data must be in unsigned 16 bits values. A value of
32767 produces a 0 Volt signal, 65535 results in positive full
output scale and a value of 0 results in negative full output
scale.
The amplitude parameter of the function generator determi-
nes the exact value of full scale. If an amplitude of 8 Volt is
selected, full scale will be 8 Volt.

Input: dNrPoints the number of waveform points that
must be loaded: 1024 or 65536 or
131072. Also determines whether the
function generator operates in DDS or
Linear mode.

wFuncGenData an array of 65536 or 131072 unsigned
16 bits values, containing the signal that
must be loaded. The caller must ensure
that enough data is allocated.

Output: Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

Remark: When generating a predefined signal, like e.g. a sinewave,
the memory is filled with a sine wave pattern and the gene-
rator operates in DDS mode. So each time one selects signal
type Arbitrary, the memory has to be filled again with the
user defined pattern.

46 How can I...

Set the generator output state

word SetFuncGenOutputOn(word wValue);

Description: This routine switches the output of the function generator on
or off.

Input: wValue The new output state
0 output is off
1 output is on

Output: Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

Get the current generator output state

word GetFuncGenOutputOn(word *wValue);

Description: This routine determines the current setting of the function
generator output

Input: -
Output: *wValue The current setting of the output

0 output is off
1 output is on

Returnvalue E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE

If you have any suggestions and/or remarks concerning the DLL's or the
manual, please contact:

TiePie engineering
PO Box 290
8600 AG SNEEK

Visitors address:

TiePie engineering
Koperslagersstraat 37
8601 WL SNEEK
Tel.: +31 515 415 416
Fax: +31 515 418 819

TiePie engineering DLL programmer’s manual rev 1.10

