Despite the care taken for the compilation of this book, TiePie engineering cannot be held responsible for any damages resulting from errors that may appear in this book.

All rights reserved. No part of this book may be reproduced, stored in a database or retrieval system, or published, in any form or in any way, electronically, mechanically, by print, photoprint, microfilm or any other means without prior written permission from TiePie engineering.
User Manual

TP801 ISA

a multifunctional
PC measuring instrument

TiePie engineering
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration of Conformity</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Sampling</td>
<td>5</td>
</tr>
<tr>
<td>- Aliasing</td>
<td>6</td>
</tr>
<tr>
<td>Digitising</td>
<td>7</td>
</tr>
<tr>
<td>The measuring system of the TP801 ISA</td>
<td>8</td>
</tr>
<tr>
<td>The probes</td>
<td>9</td>
</tr>
<tr>
<td>Safety</td>
<td>11</td>
</tr>
<tr>
<td>Hardware installation</td>
<td>13</td>
</tr>
<tr>
<td>Technical information</td>
<td>15</td>
</tr>
<tr>
<td>Pin assignments of the connectors</td>
<td>15</td>
</tr>
<tr>
<td>- 16 pin header (J2)</td>
<td>15</td>
</tr>
<tr>
<td>External 15 pin sub-D connector</td>
<td>16</td>
</tr>
<tr>
<td>BNC connectors</td>
<td>16</td>
</tr>
<tr>
<td>Specifications</td>
<td>17</td>
</tr>
<tr>
<td>A/D converter</td>
<td>17</td>
</tr>
<tr>
<td>Analog input BNC</td>
<td>17</td>
</tr>
<tr>
<td>Digital external trigger</td>
<td>17</td>
</tr>
<tr>
<td>Arbitrary Waveform Generator</td>
<td>17</td>
</tr>
<tr>
<td>Trigger system</td>
<td>18</td>
</tr>
<tr>
<td>Maximum sample rate</td>
<td>18</td>
</tr>
<tr>
<td>Memory</td>
<td>18</td>
</tr>
<tr>
<td>I/O address</td>
<td>18</td>
</tr>
<tr>
<td>General</td>
<td>18</td>
</tr>
</tbody>
</table>
EG-verklaring van overeenstemming

Wij verklaren geheel onder eigen verantwoordelijkheid, dat het produkt

TP801 ISA

waarop deze verklaring betrekking heeft, in overeenstemming is met de geharmoniseerde Europese normen

EN 55011, EN 55022, EN 50081-1 en EN 50082-1

Volgens de bepalingen van de EMC-richtlijn 89/336/EEG, gewijzigd door de richtlijn 92/31/EEG en 93/68/EEG

Sneek, 26-9-2001

ir. A.P.W.M. Poelsma

EC declaration of Confirmity

We declare, on our own responsibility, that the product

TP801 ISA

for which this declaration is valid, is in compliance with

EN 55011, EN 55022, EN 50081-1 and EN 50082-1

according the conditions of the EMC standard 89/336/EEG, and the amendments 92/31/EEC and 93/68/EEC

Sneek, 26-9-2001

ir. A.P.W.M. Poelsma

Déclaration de conformité C.E.

Nous déclarons, sous notre responsabilité, que le produit

TP801 ISA

pour lequel cette déclaration est valide, est conforme aux:

EN 55011, EN 55022, EN 50081-1 et EN 50082-1

Sneek, 26-9-2001

ir. A.P.W.M. Poelsma
TiePie engineering
Koperslagersstraat 37
8601 WL Sneek
The Netherlands

Dichiarazione di Conformità CE

Dichiamo sotto la nostra esclusiva responsabilità che il prodotto:

TP801 ISA

per il quale vale la presente dichiarazione, è conforme alle norme

EN 55011, EN 55022, EN 50081-1 e EN 50082-1

correnemente alle condizioni della normativa EMC
89/336/EEC, e successive modifiche 92/31/EEC e 93/68/EEC.

Sneek, 26-9-2001
ir. A.P.W.M. Poelsma

EC-declaración de conformidad

Nosotros declaramos, bajo nuestra propia responsabilidad, que el producto

TP801 ISA

para el cual esta declaración es válida, está en relación con

EN 55011, EN 55022, EN 50081-1 y EN 50082-1

Según las condiciones del EMC estándar 89/336/EEC, y los movimientos 92/31/EEC y 93/68/EEC.

Sneek, 26-9-2001
ir. A.P.W.M. Poelsma

EC Hyväksyntäilmoitus

Velvollisuutenamme on ilmoittaa, että tuotteemme

TP801 ISA

jota tämä selvitys koskee, on huväsyytä

EN 55011, EN 55022, EN 50081-1 ja EN 50082-1

EMC standardien 89/336/EEG, ja lisästandardien 92/31/EEC
ja 93/68/EEC mukaisesti

Sneek, 26-9-2001
ir. A.P.W.M. Poelsma

EF-Overensstemmelseserklæring

Undertegnede erklærer herved, at følgende apparat overholder bestyrelseskravene i Rådets direktiv 89/336/EØF om elektromagnetisk kompatibilitet (EMC).

Identification af apparat:
Kategori: Måleinstrument
Model/type: TP801 ISA

Standarder der er anvendt som grundlag for erklæring, eller henvisning til den prøvningsrapport, der er udstedt af et be- myndiget laboratorium:

EN 55011, EN 55022, EN 50081-1 og EN 50082-1

CE-mærket angiver kun overensstemmelse med EMC-direktiv 89/336/EØF

Sneek, 26-9-2001
ir. A.P.W.M. Poelsma

Declaration of Conformity
NOTE before using the TP801 ISA, first read the chapter about Safety.

Many technicians investigate electrical signals. Though the measurement may not be electrical, the physical variable is often converted to an electrical signal, with a special transducer. Common transducers are accelerometers, pressure probes, current clamps and temperature probes. The advantages of converting the physical parameters to electrical signals are large, since several instruments for examining electrical signals are available.

The TP801 ISA is a 2 channel, 8 bits, 100 M samples/sec interface card, which can, with the accompanying software, be used as a digital storage oscilloscope, a spectrum analyzer, a voltmeter or a transient recorder. All instruments measure by sampling the input signals, digitalize the values, process them, save them and display them.

Sampling

When sampling the input signal, samples are taken at certain moments. The frequency at which the samples are taken is called the sampling frequency. By taking a (large) number of samples, the input signal can be reconstructed.
In the latter illustration a sine wave signal is sampled with 50 samples. By connecting the adjacent samples, the original signal can be reconstructed. See also the next illustration.

The more samples are taken, the better the signal can be reconstructed. The sampling frequency must be higher than 2 times the highest frequency in the input signal. This is called the Nyquist frequency. Theoretically it is possible to reconstruct the input signal with more than 2 samples. In practice, 10 to 20 samples are necessary to be able to examine the signal thoroughly.

Aliasing

If the sampling frequency is lower than 2 times the frequency of the input signal, 'aliasing' will occur. The following illustration shows how aliasing occurs.
The input signal is a triangular signal with a frequency of 1.25 kHz (uppermost in the illustration). The signal is sampled at a frequency of 1 kHz. The dotted signal is the result of the reconstruction. From that triangular signal the periodical time is 4 ms, which corresponds with an apparent frequency (alias) of 250 Hz (1.25 kHz - 1 kHz). To avoid aliasing, the sample frequency must be higher than 2 times the maximum frequency of the input signal.

Aliasing is not always visible on an oscilloscope. In the latter illustration, it gives a 'good looking' picture. It is not apparent that aliasing occurs. The next illustration gives an example of visible aliasing.

This time it is a sine wave signal with a frequency of 257 kHz, which is sampled at a frequency of 50 kHz. The minimal sampling frequency should have been 514 kHz. For proper analysis, the sampling frequency should have been 5 MHz.

Digitising

After taking a sample of the input signal, it is digitised. This is done with an Analog to Digital Convertor, ADC. The ADC converts the size of the signal to a digital number. This is called quantifying.

The first condition for accurate measurement is to have as many as possible quantifying steps. This can be realised by using an ADC with a resolution as high as possible.
The resolution of ADC's is often given in bits. The number of bits determines the number of quantifying steps according the formula:

\[\text{number of quantifying steps} = 2^{\text{number of bits}} \]

A 2 bits ADC has 4 quantifying steps. With an input range of 10 Volt, this ADC can divide the input range in 4 parts of each 2.5 Volt.

By increasing the number of bits, the resolution increases, the number of quantifying steps increases and the sub-divisions get smaller.

The measuring system of the TP801 ISA

The TP801 ISA uses an 8 bits ADC with a maximum sampling frequency of 50 MHz for each channel.

The TP801 ISA can sample 2 channels simultaneously with a maximum speed of 50 million samples per second. By using a special technique, it is also possible to measure one channel at a speed of 100 million samples per second.

The two ADC's are switched to channel 1. One ADC starts sampling at 50 MHz. The other ADC will also sample at 50 MHz, but at intervals exactly between the moments the first ADC is sampling. By putting the samples of both ADC's together, it is possible to sample a signal at 2 x 50 MHz = 100 MHz. See also the next illustration.

This can only be done with channel 1 of the TP801 ISA.
The probes

The TP801 ISA is shipped with two probes. These are 1x/10x selectable passive probes. This means that the input signal is passed through directly or 10 times attenuated.

The x10 attenuation is achieved by means of an attenuation network. This attenuation network has to be adjusted to the oscilloscope input circuitry, to guarantee frequency independency. This is called the low frequency compensation. Each time a probe is used on a different channel or oscilloscope, the probe must be adjusted.

Therefore the probe is equipped with a setscrew, with which the parallel capacity of the attenuation network can be altered. To adjust the probe, switch the probe to the x10 and attach the probe to a 1 kHz square wave signal. Then adjust the probe for a square front corner on the square wave displayed. See also the following illustration.
Before you start working with the TP801 ISA, first read these safety rules.

C Avoid working alone.
C Check the probes/testleads for damages. DO NOT use them if they are damaged.
C Take care when measuring voltages higher than 25 V AC or 60 V DC.
C The maximum input signal size is 200 V (DC + AC.peak < 10 kHz) Applying more than these voltages may damage your TP801 ISA.
C Always choose the right function and range when measuring.
C The TP801 ISA is grounded through the grounding conductor of the power cord of the PC it is placed in. Plug the power cord in a proper, grounded outlet before making connections to the inputs and outputs of the TP801 ISA. Proper grounding is essential for safe measuring.
C If the PC with the TP801 ISA is not grounded, all accessible conductive parts can render an electrical shock.
The TP801 ISA is an 8 bits interface card which can be placed in any free 8 or 16 bits ISA slot of an IBM compatible PC, XT or AT. The card does not use DMA or interrupts, so installation is quite simple. The TP801 ISA uses 8 I/O addresses of the PC.

The only thing that has to be set is the base I/O address of the card. It can be set to any address between $000 and $3F8, in steps of 8 addresses. For that the address lines A3 .. A9 of the PC are necessary. The address lines A0 .. A2 are used for selecting the next 8 addresses of the card. Setting the base I/O address is done with dipswitch SW. Switch 1 of dipswitch SW is not connected.

The factory setting is $300, which corresponds with a dipswitch setting as in the next illustration.
If the address $300 is already in use in your PC, you can set the TP801 ISA to another address. Here follows an example for address $288:

Note If the base I/O address is changed, it also has to be changed in the software.
Appendix A
Technical information

Pin assignments of the connectors

16 pin header (J2)

1 : Ground
2 : + 5 Volt
3 : Reset out
4 : Data OK (TTL)
5 : External trigger IN (TTL)
6 : External trigger Out (TTL)
7 : External clock in (TTL)
8 : External clock out (TTL)
9 : not used
10 : not used
11 : not used
12 : not used
13 : - 5 Volt
14 : Ground
15 : + 5 Volt
16 : Ground

The signals of header J2 are TTL compatible.
External 15 pin sub-D connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>Reset out</td>
</tr>
<tr>
<td>3</td>
<td>External trigger input (TTL)</td>
</tr>
<tr>
<td>4</td>
<td>External clock in (TTL)</td>
</tr>
<tr>
<td>5</td>
<td>not used</td>
</tr>
<tr>
<td>6</td>
<td>not used</td>
</tr>
<tr>
<td>7</td>
<td>- 5 Volt</td>
</tr>
<tr>
<td>8</td>
<td>+ 5 Volt</td>
</tr>
<tr>
<td>9</td>
<td>+ 5 Volt</td>
</tr>
<tr>
<td>10</td>
<td>Data OK (TTL)</td>
</tr>
<tr>
<td>11</td>
<td>External trigger output (TTL)</td>
</tr>
<tr>
<td>12</td>
<td>External clock out (TTL)</td>
</tr>
<tr>
<td>13</td>
<td>not used</td>
</tr>
<tr>
<td>14</td>
<td>not used</td>
</tr>
<tr>
<td>15</td>
<td>Ground</td>
</tr>
</tbody>
</table>

The signals of the 15 pin sub-D connector are TTL compatible and coming from the 16 pin header J2.

BNC connectors

The BNC connectors at the back of the TP801 ISA have the following function:

- the upper BNC connector is the input of channel 1
- the middle BNC connector is the input of channel 2
- the lower BNC connector is the output of the generator
Appendix B
Specifications

A/D converter

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>8 bits = 0.39%</td>
</tr>
<tr>
<td>Effective data throughput</td>
<td>50000000 samples/sec</td>
</tr>
<tr>
<td>Conversion time</td>
<td>20 nsec, 10 nsec on one channel</td>
</tr>
<tr>
<td>100 000 000 samples/sec on one channel</td>
<td></td>
</tr>
</tbody>
</table>

Analog input BNC

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100 mVolt .. 80 Volt full scale</td>
</tr>
<tr>
<td>Maximum voltage</td>
<td>200 Volt (DC + AC peak < 10 kHz)</td>
</tr>
<tr>
<td>Impedance</td>
<td>1 MΩ / 30 pF</td>
</tr>
<tr>
<td>Coupling</td>
<td>AC / DC</td>
</tr>
<tr>
<td>Accuracy</td>
<td>1% ± 1 LSB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC to 50 MHz</td>
</tr>
<tr>
<td>SNR</td>
<td>7.3 bit / 43 dB</td>
</tr>
</tbody>
</table>

Digital external trigger

| Level | 0 - 5 Volt TTL |

Arbitrary Waveform Generator

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample rate</td>
<td>0 - 25 MHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>10 bit</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC to 2 MHz</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ohm</td>
</tr>
<tr>
<td>Coupling</td>
<td>DC</td>
</tr>
<tr>
<td>Output amplitude</td>
<td>-10 Volt .. 10 Volt</td>
</tr>
<tr>
<td>Amplitude step</td>
<td>0 - 10 V in 65535 steps, resolution 0.2 mV</td>
</tr>
<tr>
<td>DC level</td>
<td>0 - 10 V in 65535 steps, resolution 0.2 mV</td>
</tr>
<tr>
<td>Waveforms</td>
<td>sine, triangle, square, DC, noise and user defined</td>
</tr>
<tr>
<td>Symmetry</td>
<td>1 - 99%, 1% steps</td>
</tr>
</tbody>
</table>
Trigger system

- **System**: digital, 2 levels
- **Trigger modes**: edge, window, peak, TV, external
- **Level adjustment**: 0 - 100% of full scale
- **Resolution**: 0.39% (8 bits)
- **Pre trigger**: 0 - 32768 samples (0 - 100%)
- **Post trigger**: 0 - 32768 samples (0 - 100%)

Maximum sample rate

- 50 MHz on 2 channels, 100 MHz on 1 channel

Memory

- 32/64 KWord per channel

I/O address

- $100 - $3F8

General

- **Ambient temperature**: 10 °C - 35 °C
- **Dimensions**
 - **Height**: 127 mm (5.0")
 - **Length**: 173 mm (6.8")
 - **Width**: 22 mm (0.9")
- **Weight**: 140 gram (5 ounce)
- **Accessories**: 2 oscilloscope probes 1:1 - 1:10 switchable
If you have any suggestions and/or remarks concerning the program, the TP801 ISA or the manual, please contact:

TiePie engineering
PO Box 290
8600 AG SNEEK

Visitors address:

TiePie engineering
Koperslagersstraat 37
8601 WL SNEEK
Tel.: +31 515 415 416
Fax: +31 515 418 819