
Programmer's Manual
TiePie DLLs

for: TP112 TiePieSCOPE HS508
TP208 TiePieSCOPE HS801 AWG
TP508 Handyprobe HP2
TP801 AWG ISA Handyscope HS2
TP801 AWG PCI Handyscope HS3
TE6100 Handyscope HS4 (DIFF)

Revision 1.29

Table of contents 3

Table of contents

Table of contents . 3

Introduction . 7

How can I... 9
Understand the codes . 9

Error codes . 9
Defined constants . 9

Open / Close the instrument . 11
Search and Initialize the Instrument 11
Close the Instrument . 11

Get information about my instrument . 12
Get the calibration date . 12
Get the instrument serial number . 12
Determine the available input sensitivities 13
Determine the available input resolutions 13
Get the number of input channels . 14
Get the maximum sampling frequency 14
Get the maximum record length . 14
Check for availability of DC hardware offset adjustment 15
Check for a square wave generator 15
Check for a function generator . 15
Get the maximum amplitude of the function generator 16

Perform a measurement . 17
Start a measurement . 17
Check if the hardware is measuring 17
Abort a running measurement . 17
Read the trigger status . 18
Read the measurement status . 18
Force a trigger . 18

Retrieve the data . 19
Get the data from a specific channel in binary format 19
Get the date from a specific channel in Volts 19
Get all digital input values . 20
Get one sample of the digital input values 20
Example of use of the routines . 21

Setup for streaming measurements . 23
Using DataReady callback function . 23
Using DataReady event . 23
Setting up streaming measurements 24

4 Table of contents

Getting the current transfer mode . 24
Performing streaming measurements 25

Control the input resolution . 26
Set the input resolution . 26
Get the current input resolution . 26

Control the instrument configuration . 27
Set the instrument configuration . 27
Get the current instrument configuration 27

Control which channels are measured . 28
Get the current measure mode . 28
Set the measure mode . 28

Control the time base . 29
Get the current record length . 29
Set the record length . 29
Get the current number of post samples 30
Set the number of post samples . 30
Get the current sampling frequency 31
Set the sampling frequency . 31
Get the sample clock status . 32
Set the sample clock status . 32

Control the analog input channels . 33
Get the current input sensitivity . 33
Set the input sensitivity . 33
Get the current auto ranging status 34
Set the auto ranging status . 34
Get the current input coupling . 35
Set the input coupling . 35
Get the current DC level value . 36
Set the DC level value . 36

Control the trigger system . 37
Get the current trigger source . 37
Set the trigger source . 37
Get the current trigger mode . 38
Set the trigger mode . 38
Get the current trigger mode for a specific channel 39
Set the trigger mode for a specific channel 39
Get the current trigger level . 40
Set the trigger level . 40
Get the current trigger hysteresis . 41
Set the trigger hysteresis . 41
Select the PXI external trigger signals 42
Get the current used PXI external trigger signals 42
Set the PXI external trigger slopes . 43

Table of contents 5

Get the current PXI external trigger slopes 43
Control the digital outputs . 44

Set the digital outputs . 44
Get the current status of the digital outputs 44

Control the Square Wave generator . 45
Get the current square wave generator frequency 45
Set the square wave generator frequency 45

Control the Arbitrary Waveform Generator 46
Set the generator mode . 46
Get the current generator mode . 46
Set the generator signal type . 47
Get the current generator signal type 47
Set the generator amplitude . 48
Get the current generator amplitude 48
Set the generator DC Offset . 49
Get the current generator DC Offset 49
Set the generator signal symmetry . 50
Get the current generator signal symmetry 50
Set the generator frequency . 51
Get the current generator frequency 51
Set the generator trigger source . 52
Get the current generator trigger source 52
Fill the function generator waveform memory 53
Set the generator output state . 54
Get the current generator output state 54
Set the generator enabled state . 55
Get the current generator enabled state 55
Generate bursts . 56

Use the I2C bus . 57
Get the I2C bus speed . 57
Set the I2C bus speed . 57
Write data to the I2C bus . 58
Read data from the I2C bus . 59

Perform resistance measurements . 60
Setup resistance measurements . 60
Retrieve the resistance values . 60

Deprecated routines . 61
Get the maximum sampling frequency 61
Start a measurement . 61
Get all measurement data in Volts . 61
Get one sample of the measurement data, in Volts 62
Get all measurement data, binary . 62

6 Table of contents

Get one sample of the measurement data, binary 62
Retrieve the measured data in binary format 62
Retrieve the measured data in Volts 63
Get the current sampling frequency 63
Set the sampling frequency . 63
Get the current trigger timeout value 63
Set the trigger timeout value . 64

Introduction 7

Introduction

This manual describes the available functions in the DLLs for the various TiePie
engineering measuring instruments.

For each instrument, a specific DLL is available. All DLLs have the same routines
and the same programming interface.

Since all instruments have different specifications, a number of functions are
available to determine the specifications of the instrument, like e.g. maximum
sampling frequency, maximum record length, number of channels etc.

Not all instruments have the same functionality as other instruments, like e.g. the
availability of a function generator or digital inputs and outputs. When a certain
function is called and the instrument does not support that functionality, the
routine will return an error code indicating that the functionality is not suppor-
ted.

Since the initial development of the DLLs, many routines have been added to
the DLL, to improve the performance of performing measurements using the
DLL. Several of those routines are replacing older routines, but are not entirely
compatible. To avoid that existing software would no longer function, the old
routines are still available in the DLL, but are marked in the manual as being
obsolete. It is advised to stop using these routines and use the new routines
instead.

8 Introduction

How can I... 9

How can I...

Understand the codes

Error codes

Most routines in the DLL return a status value, that indicates whether the routi-
ne was executed successfully or not. In case of a non successfull execution, the
return value will indicate the possible cause of the error. The following codes
are used:

Code Names Code Values

Hexadecimal Binary

E_NO_ERRORS = 0x0000; /*0000000000000000*/
E_NO_HARDWARE = 0x0001; /*0000000000000001*/
E_NOT_INITIALIZED = 0x0002; /*0000000000000010*/
E_NOT_SUPPORTED = 0x0004; /*0000000000000100*/
E_NO_GENERATOR = 0x0008; /*0000000000001000*/
E_INVALID_CHANNEL = 0x0010; /*0000000000010000*/
E_INVALID_VALUE = 0x0020; /*0000000000100000*/
E_I2C_ERROR = 0x0040; /*0000000001000000*/
E_I2C_INVALID_ADDRESS = 0x0080; /*0000000010000000*/
E_I2C_INVALID_SIZE = 0x0100; /*0000000100000000*/
E_I2C_NO_ACKNOWLEDGE = 0x0200; /*0000001000000000*/

Defined constants

For several programming environments declaration files (header files) are availa-
ble. These files contain declarations for all the available functions in the DLL, but
also declarations of many used constants, like for trigger sources.

It is recommended that the constants from these declaration files are used in the
application that uses the DLL. When in a future release of the DLL some values
have changed, they will be adapted in the declaration file as well, so the applica-
tion only needs to be recompiled, it will not affect the rest of the program.

All channel related routines use a channel parameter to indicate for which chan-
nel the value is meant:

10 How can I...

lCh1 = 1
lCh2 = 2
lCh3 = 3
lCh4 = 4

The routines that deal with the MeasureMode use different values:

mmCh1 = 1
mmCh2 = 2
mmCh3 = 4
mmCh4 = 8

How can I... 11

Open / Close the instrument

Search and Initialize the Instrument

word InitInstrument(word wAddress)

Descriptions: Initialize the hardware of the instrument. Set default measure-
ment settings, allocate memory and obtain the calibration con-
stants etc.
Parallel port connected instruments, USB instruments and PCI
bus instruments detect the hardware by themselves and ignore
the address parameters.

Input: wAddress The hardware address of the instrument should
be passed to this routine.

Output: Return value E_NO_ERRORS
E_NO_HARDWARE

Note All instruments have their calibration constants in internal, non-volatile
memory, except for the TP208 and TP508. These have to be calibrated
using internal routines. This is done automatically at first startup every-
day. Some relays will begin to click.

Close the Instrument

word ExitInstrument(void)
Description: Close the instrument. Free any allocated resources and memory,

place the relays in their passive state, etc.
Only call this routine when the instrument is no longer required

Input: -
Output: Return value E_NO_ERRORS

E_NOT_INITIALIZED

Note Calling ExitInstrument in LabView causes LabView no longer to be able
to connect to the instrument. LabView has to be closed and opened
again to restore the contact. Therefore, only use ExitInstrument when
the instrument is no longer required, right before closing LabView.

12 How can I...

Get information about my instrument

Get the calibration date

word GetCalibrationDate(dword *dwDate)

Description: This routine returns the calibration date of the instrument. The
date is encoded in a packed 32 bit variable:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|<-------------------->|<--------------------->|<---------------------------------->|
| day (8 bits) | (month (8 bits) | year (16 bits) |

Example decoding routine in C/C++:

day = number >> 24; /* highest 8 bits */
month = (number >> 16) & 0xFF; /* middle 8 bits */
year = number & 0xFFFF; /* lowest 16 bits */

Input: -
Output: dwDate The calibration date

Return value E_NO_ERRORS
E_NOT_SUPPORTED
E_NO_HARDWARE

Get the instrument serial number

word GetSerialNumber(dword *dwSerialNumber)

Description: This routine returns the Serial Number of the instrument. This
number is hard coded in the hardware. TP112, TP208 and
TP508 do not have a serial number in the instrument.

Input: -
Output: dwSerialNumber the serial number

Return value E_NO_ERRORS
E_NOT_SUPPORTED
E_NO_HARDWARE

How can I... 13

Determine the available input sensitivities

word GetAvailableSensitivities(double *dSensitivities)

description: This routine retrieves the available input sensitivities from the
hardware and stores them in an array.
dSensitivities is a 20 elements large array. The caller must ensure
that there is enough space in the array to contain the data. The-
refore the size of the array in bytes must be at least

20 * sizeof(double)
At return, all elements containing a non-zero value, contain an
input sensitivity. This is a full scale value. So if an element contains
the value 4.0, the input sensitivity is 4 Volt full scale, enabling to
measure input signals from -4 Volt - +4 Volt.

input: -
output: dSensitivities the array of input sensitivities

Return value E_NO_ERRORS
E_NO_HARDWARE

Determine the available input resolutions

word GetAvailableResolutions(double *dResolutions)

description: The Handyscope HS3 and Handyscope HS4 support different,
user selectable input resolutions. This routine retrieves the availa-
ble input resolutions from the hardware and stores them in an
array.
dResolutions is a 20 elements large array. The caller must ensure
that there is enough space in the array to contain the data. The-
refore the size of the array in bytes must be at least

20 * sizeof(double)
At return, all elements containing a non-zero value, contain an
input resolution in number of bits.

input: -
output: dResolutions the array of input sensitivities

Return value E_NO_ERRORS
E_NO_HARDWARE

14 How can I...

Get the number of input channels

word GetNrChannels(word *wNrChannels)

Description: This routine returns the number of input channels of the instru-
ment.

Input: -
Output: wNrChannels the number of channels

Return value E_NO_ERRORS
E_NO_HARDWARE

Get the maximum sampling frequency

double GetMaxSampleFrequencyF(void)

Description: The different instruments have different maximum sampling fre-
quencies. This routine queries the maximum sampling frequency.

Input: -
Output: Return value The maximum sampling frequency the instru-

ment supports, in Hz.

Note The above function replaces the existing, old and deprecated function
GetMaxSampleFrequency.

Get the maximum record length

dword GetMaxRecordLength(void)

Description: The different instruments have different record lengths. This
routine queries the maximum available record length per chan-
nel, in samples.

Input: -
Output: Return value The maximum record length the instrument

supports, in number of samples.

How can I... 15

Check for availability of DC hardware offset adjustment

word GetDCLevelStatus(void)

Description: Some instruments support DC Hardware offset adjustment. This
routine checks if the DC Level is supported.

Input: -
Output: Return value E_NO_ERRORS

E_NOT_SUPPORTED
E_NO_HARDWARE

Check for a square wave generator

word GetSquareWaveGenStatus(void)

Description: Some instruments have a built-in square wave generator, the
HS508 for example. This routine checks the presence of the
generator.

Input: -
Output: Return value E_NO_ERRORS

E_NO_GENERATOR
E_NO_HARDWARE

Check for a function generator

word GetFunctionGenStatus(void)

Description: The TiePieSCOPE HS801, TP801 and Handyscope HS3 can
have a built-in arbitrary waveform generator. When this function
returns E_NO_GENERATOR, the HS801, TP801 or Handysco-
pe HS3 is equipped with a simple square wave generator.

Input: -
Output: Return value E_NO_ERRORS

E_NO_GENERATOR
E_NO_HARDWARE

16 How can I...

Get the maximum amplitude of the function generator

word GetFuncGenMaxAmplitude(double *dAmplitude)

Description: The maximum output voltage for the TiePieSCOPE HS801 and
Handyscope HS3 generator is 12 Volt, the maximum output
voltage for the TP801 generator is 10 Volt. This routine determi-
nes the maximum voltage.

Input: -
Output: dAmplitude The maximum amplitude the generator sup-

ports.
Return value E_NO_ERRORS

E_NO_GENERATOR
E_NO_HARDWARE

How can I... 17

Perform a measurement

Start a measurement

word ADC_Start(void)

Description: This routine writes any new instrument setting information to the
hardware and then starts the measurement. If the hardware is
already measuring, this measurement is aborted. Previous mea-
sured data is lost

Input: -
Output: Return value E_NOT_INITIALIZED

E_NO_ERRORS
E_NO_HARDWARE

Check if the hardware is measuring

word ADC_Running(void)

Description: This routine checks if the hardware is currently measuring
Input: -
Output: Return value 0 = not measuring

1 = measuring

Abort a running measurement

word ADC_Abort(void)

Description: This routine aborts a running measurement. Any measured data
is lost. It is not required to abort a running measurement before
starting a new one, ADC_Start does this already.

Input: -
Output: Return value E_NOT_INITIALIZED

E_NO_ERRORS
E_NO_HARDWARE

18 How can I...

Read the trigger status

word ADC_Triggered(void)

Description: This routine reads the trigger status from the hardware. The
returned value indicates which trigger source caused the trigger,
this value is different for various instruments.

Input: -
Output: Return value HS4 / HS4 DIFF other instruments

 0 not triggered not triggered
 1 Ch1 Ch1
 2 Ch2 Ch2
 4 Ch3 External
 8 Ch4 -
16 External -

Remark: Return value can be a combination of indicated values.

Read the measurement status

word ADC_Ready(void)

Description: This routine checks if the measurement is ready or not.
Input: -
Output: Return value 0 = not ready

1 = ready

Force a trigger

word ADC_ForceTrig(void)

Description: This routine forces a trigger when the input signal will not meet
the trigger specifications. This allows to do a measurement and
see the signal.

Input: -
Output: Return value E_NOT_INITIALIZED

E_NO_ERRORS
E_NO_HARDWARE

How can I... 19

Retrieve the data

Get the data from a specific channel in binary format

word ADC_GetDataCh(word wCh, word *wData)

Description: This routine transfers the measured data of one channel from the
acquisition memory in the hardware via the DLL into the memo-
ry in the application. The measured data is returned in binary
values. A value of 0 corresponds to -Sensitivity, 32768 corres-
ponds to 0 and 65535 to +Sensitivity in Volts. wData is an array.
The caller must ensure that there is enough space in the array to
contain the data. Therefore the size of the array in bytes must be
at least

RecordLength * sizeof(word)
Input: wCh Indicates from which channel the data has to be

retrieved
Output: wData The array to which the measured data of the

requested channel should be passed.
Return value E_NO_ERRORS

E_NO_HARDWARE

Get the date from a specific channel in Volts

word ADC_GetDataVoltCh(word wCh, double *Data)

Description: This routine transfers the measured data of one channel from the
acquisition memory in the hardware via the DLL into the memo-
ry in the application. The measured data is returned in volt. dDa-
ta is an array. The caller must ensure that there is enough space
in the array to contain the data. Therefore the size of the array in
bytes must be at least

RecordLength * sizeof(double)
Input: wCh Indicates from which channel the data has to be

retrieved
Output: dData The array to which the measured data of the

requested channel should be passed.
Return value E_NO_ERRORS

E_NO_HARDWARE

20 How can I...

Get all digital input values

word GetDigitalInputValues(word *wValues)

Description: The TP112 has eight digital inputs, which are sampled simultane-
ously with the analog input channels.
This routine transfers the measured digital values from the me-
mory in the DLL into the memory in the application. The measu-
red data is returned in binary values. Each bit in the digital data
words represents a digital input. wValues is an array. The caller
must ensure that there is enough space in the array to contain the
data. Therefore the size of the array in bytes must be at least

RecordLength * sizeof(word)
Input: -
Output: Return value E_NO_ERRORS

E_NOT_SUPPORTED
E_NO_HARDWARE

Get one sample of the digital input values

word GetOneDigitalValue(word wIndex, word *wValue)

Description: This routine transfers a single digital input value from the memory
in the DLL to the memory of the application.

Input: wIndex The index of the measured data point, relative
to the trigger point (negative for pre samples,
positive for post samples)

Output: wValue Return address for the digital input value.
Return value E_NO_ERRORS

E_NOT_SUPPORTED
E_NO_HARDWARE

How can I... 21

Example of use of the routines

To use the measurement routines, your application could contain a loop like the
following (for a two channel instrument):

type TDoubleArray = array[0 .. 128 * 1024 - 1] of double;

var wCh : word;
 wChCount : word;
 dSampleFreq : double;
 ChSensArray : array[lCh1 .. lCh2] of double;
 ChDoubleArray : array[lCh1 .. lCh2] of TDoubleArray;

if InitInstrument(0) = E_NO_ERRORS then
begin
 GetNrChannels(wChCount);
 {*
 * Setup Ch1, 8 Volt full scale range, AC coupling
 *}
 ChSensArray[lCh1] := 8.0;
 SetSensitivity(lCh1, ChSensArray[lCh1]);
 SetCoupling(lCh1, lctAC);
 {*
 * Setup Ch2, 20 Volt full scale range, DC coupling
 *}
 ChSensArray[lCh1] := 20.0;
 SetSensitivity(lCh2, ChSensArray[lCh2]);
 SetCoupling(lCh2, lctDC);
 {*
 * Setup the trigger, source Ch1, rising slope, level 0 Volt
 *}
 SetTriggerSource(ltsCh1);
 SetTriggerMode(ltmRising);
 SetTriggerLevel(lCh1, 0);
 {*
 * Setup the time base:
 * 5000 samples record length,
 * 50% pre trigger (=2500 post samples, 2500 pre samples)
 * 10 MHz sampling frequency
 *}
 dSampleFreq := 10e6;
 SetRecordLength(5000);
 SetPostSamples(2500);
 SetSampleFrequencyF(dSampleFreq);
 {*
 * select the channel(s) to measure
 *}
 SetMeasureMode(mmCh1 + mmCh2);
 {*
 * start performing measurements
 *
 * see next page
 *}

22 How can I...

 ADC_Start;
 StartTime := GetCurrentTime;
 while bContinue do
 begin
 if GetCurrentTime > (StartTime + TimeOut) then
 begin
 ADC_ForceTrig;
 end; { if }
 if ADC_Ready = 1 then
 begin
 for wCh := lCh1 to wChCount do
 begin
 ADC_GetDataVoltCh(wCh, ChDoubleArray[wCh]);
 end; { for }
 ADC_Start;
 StartTime := GetCurrentTime;
 ApplicationProcessData;
 end; { if }
 Application.ProcessMessages;
 end; { while }
end; { if }

Legend: bold = reserved words
123 = number
italic = comment
green = pseudo code

How can I... 23

Setup for streaming measurements

It is possible to do streaming measurements with the Handyscope HS3 and
Handyscope HS4 (DIFF). Each time a specified number of samples is measured
(the record length), they can be transferred to the computer and processed
while the hardware continues measuring uninterrupted.

This way of measuring uses a callback function or an event to let the application
know new samples are available.

Using DataReady callback function

When new data is available, a function in the application can be called. The DLL
has a function pointer which has to be set to this function, using

word SetDataReadyCallback(TDataReady pAddress)

description This routines sets the pointer for the Ready function, which will
be called when new data is available

input: pAddress a pointer to a function with the following proto-
type:
void DataReady(void)

output Return value E_NO_HARDWARE
E_INVALID_VALUE
E_NO_ERRORS

In the callback function, the data can be read from the instrument, using the
ADC_GetData routines.

Using DataReady event

When new data is available, an event can be set by the DLL. The user must
reset the event when the data is read.

word SetDataReadyEvent(HANDLE hEvent)

description This routine sets the event handle for the DataReady event
input hEvent the event handle
output Return value E_NO_HARDWARE

E_NO_ERRORS

24 How can I...

Setting up streaming measurements

To tell the instrument a streaming measurement has to be performed, following
routine has to be used.

word SetTransferMode(dword dwMode)

Description: This routine tells the instrument what kind of measurement has
to be performed.

Input: dwMode determines the requested data transfer mode.
Possible values are:
ltmBlock (0) default value. During the mea-

surement, all data is stored in the
instrument. When the measure-
ment is ready, all data is transferred
in one block to the computer. This
is normal oscilloscope mode

ltmStream (1) Each time during the measure-
ment that new data is available, it
will be transferred to the compu-
ter. So a measurement gives a con-
stant stream of data.

Output: Return value E_NO_ERRORS
E_NO_HARDWARE
E_INVALID_VALUE

Getting the current transfer mode

word GetTransferMode(dword *dwMode)

Description: This routine reads the current set transfer mode from the instru-
ment.

Input: -
Output: dwMode holds the current data transfer mode.

Return value E_NO_ERRORS
E_NO_HARDWARE

How can I... 25

Performing streaming measurements

When the callback function has been created and the transfer mode is set to
streaming mode, streaming measurements can be performed.

The sampling speed has to be set to the required values and the input channels
have to be set to appropriate values (auto ranging does not work in streaming
mode). The record length has to be set to the number of samples that has to be
measured each measurement. There is no trigger and no pre- or post trigger
available in streaming mode.

A streaming measurement is started with the before mentioned routine
ADC_Start(). During the measurement the callback function will be called each
time new data is available. These can be used to update the screen of the appli-
cation and show the measured data.

To stop a running measurement, call ADC_Abort(). This will stop the running
measurement.

26 How can I...

Control the input resolution

The Handyscope HS3 and Handyscope HS4 (DIFF) support a number of diffe-
rent input resolutions.

Set the input resolution

word SetResolution(byte byResolution)

Description: This routine sets the input resolution of the hardware.
Use GetAvailableResolutions() to determine which resolutions
are available.

Input: byResolution the new resolution, in bits
Output: Return value E_NO_ERRORS

E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

Remark: When setting a new input resolution, the maximum sampling
frequency of the hardware changes as well.
Use GetMaxSampleFrequency() to determine the new maxi-
mum sampling frequency.

Get the current input resolution

word GetResolution(byte *byResolution)

Description: This routine retrieves the currently set input resolution in bits.
Input: -
Output: byResolution the return address for the resolution

Return value E_NO_ERRORS
E_NO_HARDWARE

How can I... 27

Control the instrument configuration

The Handyscope HS3 allows to change it’s instrument configuration. It supports
the following configurations:

licHS3Norm (0) operate as a 2 channel 12 bit instrument with 128K
samples per channel and an Arbitrary Waveform Genera-
tor.

licHS3256K (1) operate as a 2 channel 12 bit instrument with 256K
samples per channel, without generator.

licHS3512K (2) operate as a 1 channel 12 bit instrument, with 512K
samples for the channel, without generator.

Set the instrument configuration

word SetInstrumentConfig(word wMode)

Description: This routine changes the Instrument configuration.
Input: wMode The new configuration
Output: Return value E_NO_ERRORS

E_INVALID_VALUE
E_NO_HARDWARE
E_NOT_SUPPORTED

Get the current instrument configuration

word GetInstrumentConfig(word *wMode)

Description: This routine returns the current Instrument configuration.
Input: -
Output: wMode The current configuration

Return value E_NO_ERRORS
E_NO_HARDWARE
E_NOT_SUPPORTED

28 How can I...

Control which channels are measured

The routines to get or set the measure mode use channel numbers. The follo-
wing numbers are used:

mmCh1 = 1
mmCh2 = 2
mmCh3 = 4
mmCh4 = 8

Get the current measure mode

word GetMeasureMode(byte *byMode)

Description: This routine returns the current Measure Mode, e.g.:
mmCh1 the signal at channel 1 is measured
mmCh2 the signal at channel 2 is measured
mmCh1 + mmCh2 the signals at channel 1 and 2 are measu-

red simultaneously
mmCh3 the signal at channel 3 is measured
mmCh1 + mmCh3 the signals at channel 1 and 3 are measu-

red simultaneously
Input: -
Output: byMode The current Measure Mode.

Return value E_NO_ERRORS
E_INVALID_VALUE
E_NO_HARDWARE

Set the measure mode

word SetMeasureMode(byte byMode)

Description: This routine changes the measure mode, see also GetMeasure-
Mode().

Input: byMode The new measure mode.
Output: Return value E_NO_ERRORS

E_NOT_SUPPORTED
E_INVALID_VALUE
E_NO_HARDWARE

How can I... 29

Control the time base

Get the current record length

dword GetRecordLength(void)

Description: This routine returns the total number of points to be digitized.
The number of pre samples (number of samples to measure
before the trigger occurred) is calculated like this:
PreSamples = RecordLength - PostSamples.

Input: -
Output: Return value The total number of points to be digitized per

channel.
Remark: Setting a record length smaller than the number of post samples

gives an E_INVALID_VALUE error. See also the routines
Get/SetPostSamples.

Set the record length

word SetRecordLength(dword wTotal)

Description: This routine sets the total number of points to be digitized. The
maximum record length can be determined with the routine
GetMaxRecordLength(). The minimum value equals the current
number of post samples. When an invalid value is passed on to
the routine, this value is ignored and no changes in the instru-
ment setting are made.

Input: wTotal The total number of points to be digitized per
channel.

Output: Return value E_NO_ERRORS
E_INVALID_VALUE
E_NO_HARDWARE

Remark: Setting a record length smaller than the number of post samples
gives an E_INVALID_VALUE error. See also the routines
Get/SetPostSamples.

30 How can I...

Get the current number of post samples

dword GetPostSamples(void)

Description: This routine returns the number of post samples to measure (the
number of samples after the trigger has occurred).

Input: -
Output: Return value The current selected number of post samples

to measure.
Remark: Setting a number of post samples larger than the record length

gives an E_INVALID_VALUE error. See also the routines
Get/SetRecordLength.

Set the number of post samples

word SetPostSamples(dword wPost)

Description: This routine sets the number of post samples. This number must
be between 0 and the record length. When an invalid value is
passed on to the routine, this value is ignored and no changes in
the instrument setting are made.

Input: wPost The requested number of post samples to mea-
sure.

Output: Return value E_NO_ERRORS
E_INVALID_VALUE
E_NO_HARDWARE

Remark: Setting a number of post samples larger than the record length
gives an E_INVALID_VALUE error. See also the routines
Get/SetRecordLength.

How can I... 31

Get the current sampling frequency

double GetSampleFrequencyF(void)

Description: This routine returns the current set sampling frequency in Hz.
The minimum/maximum frequency supported is instrument
dependent.

Input: -
Output: Return value The current sampling frequency in Hz.

Set the sampling frequency

word SetSampleFrequencyF(double *dFreq)

Remarks: The routine sets the sampling frequency. The hardware is not
capable of creating every selected frequency so the hardware
chooses the nearest allowed frequency to use, This is the fre-
quency that is returned in dFreq.

Input: dFreq The requested sampling frequency in Hz
Output: dFreq The actual selected sampling frequency in Hz

Return value E_NO_ERRORS
E_NO_HARDWARE

Note The above two functions are replacing the existing, old and deprecated
functions GetSampleFrequency() and SetSampleFrequency().

32 How can I...

Get the sample clock status

word GetExternalClock(word *wMode)

Description: This routine determines whether the sampling clock uses the
internal Crystal oscillator or the external clock input
Only 50 MHz and faster devices support external clock input

Input: -
Output: wMode The status of the internal clock,

0 = clock internal
1 = clock external

Return value E_NO_ERRORS
E_NOT_SUPPORTED
E_NO_HARDWARE

Set the sample clock status

word SetExternalClock(word wMode)

Description: This routine sets the sampling clock mode: is the internal crystal
oscillator used or the external clock input?
Only 50 MHz and faster devices support external clock input

Input: wMode 0 = internal clock
1 = external clock

Output: Return value E_NO_ERRORS
E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

How can I... 33

Control the analog input channels

The routines to adjust channel settings use channel numbers. The following
numbers are used:

lCh1 = 1
lCh2 = 2
lCh3 = 3
lCh4 = 4
etc.

Get the current input sensitivity

word GetSensitivity(byte byCh, double *dSens)

Description: This routine returns the current selected full scale input sensitivity
in Volts for the selected channel.

Input: byCh The channel whose current Sensitivity is reque-
sted (1, 2, 3, 4)

Output: dSens The current sensitivity.
Return value E_NO_ERRORS

E_INVALID_CHANNEL
E_NO_HARDWARE

Set the input sensitivity

word SetSensitivity(byte byCh, double *dSens)

Description: This routine sets the Sensitivity for the selected channel. The
hardware can only deal with a limited number of ranges. The
sensitivity that matches the entered sensitivity best is used. This is
the value that will be returned in dSens.

Input: byCh The channel whose Sensitivity is to be changed
(1, 2, 3, 4)

dSens The new Sensitivity in Volts
Output: dSens Contains the actual set Sensitivity, on return

Return value E_NO_ERRORS
E_INVALID_CHANNEL
E_NO_HARDWARE

34 How can I...

Get the current auto ranging status

word GetAutoRanging(byte byCh, byte *byMode)

Description: This routine returns the current auto ranging mode:
0 : Auto ranging is off
1 : Auto ranging is on.
If Auto ranging is switched on for a channel, the sensitivity will be
automatically adjusted if the input signal becomes too large or too
small.
When a measurement is performed, the data is examined. If that
data indicates another range will provide better results, the hard-
ware is set to a new sensitivity. The next measurement that is
performed, will be using that new sensitivity. Auto ranging has no
effect on a current measurement.

Input: byCh The channel whose current Auto ranging mode
is requested (1, 2, 3 ,4).

Output: byMode The Auto ranging mode.
Return value E_NO_ERRORS

E_INVALID_CHANNEL
E_NO_HARDWARE

Set the auto ranging status

word SetAutoRanging(byte byCh, byte byMode)

Description: This routine selects the Auto ranging mode:
0 : turn Auto ranging off
1 : turn Auto ranging on.
See also GetAutoRanging.

Input: byCh The channel whose Auto ranging mode has to
be set (1, 2, 3, 4).

byMode The new value for the Auto ranging mode.
Output: Return value E_NO_ERRORS

E_INVALID_CHANNEL
E_INVALID_VALUE
E_NO_HARDWARE

How can I... 35

Get the current input coupling

word GetCoupling(byte byCh, byte *byMode)

Description: This routine returns the current signal coupling for the selected
channel:
lctAC : coupling AC (0)
lctDC :coupling DC (1)
In DC mode both the DC and the AC components of the signal
are measured.
In AC mode only the AC component is measured.

Input: byCh The channel whose current coupling is reque-
sted (1, 2, 3, 4)

Output: byMode The current coupling.
Return value E_NO_ERRORS

E_INVALID_CHANNEL
E_INVALID_VALUE
E_NO_HARDWARE

Set the input coupling

word SetCoupling(byte byCh, byte byMode)

Description: This routine changes the signal coupling for the selected channel.
See also GetCoupling.

Input: byCh The channel whose Coupling is to be changed
(1, 2, 3, 4).

byMode The new coupling for the selected channel (0 or
1).

Output: Return value E_NO_ERRORS
E_INVALID_CHANNEL
E_INVALID_VALUE
E_NO_HARDWARE

36 How can I...

Get the current DC level value

word GetDcLevel(byte byCh, double *dLevel)

Description: This routine returns the current DC Level value for the selected
channel. This voltage is added to the input signal before digitizing.
This is used to shift a signal that is outside the current input range
into the input range.

Input: byCh The channel whose DC Level is requested (1,
2, 3, 4)

Output: dLevel The current DC Level.
Return value E_NO_ERRORS

E_INVALID_CHANNEL
E_NOT_SUPPORTED
E_NO_HARDWARE

Set the DC level value

word SetDcLevel(byte byCh, double dLevel)

Description: This routine is used to change the DC Level for the selected
channel. The DC Level has a minimum of -2*sensitivity and a
maximum of +2*sensitivity. If the sensitivity changes, the DC
level is automatically checked and clipped if necessary. See also
GetDcLevel.

Input: byCh The channel whose DC Level is to be set (1, 2,
3, 4)

dLevel The new DC Level in Volts
Output: Return value E_NO_ERRORS

E_INVALID_CHANNEL
E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

Note Not all devices support DC Level. If DC Level is not supported, the
error value E_NOT_SUPPORTED is returned.

How can I... 37

Control the trigger system

Get the current trigger source

word GetTriggerSource(byte *bySource)

Description: This routine is used to retrieve the current Trigger Source of the
acquisition system.
ltsCh1 (0) Channel 1
ltsCh2 (1) Channel 2
ltsCh3 (2) Channel 3
ltsCh4 (3) Channel 4
ltsExternal (4) a digital external signal
ltsAnalogExt (5) an analog external signal
ltsAnd (6) Channel 1 AND Channel 2
ltsOr (7) Channel 1 OR Channel 2
ltsXor (8) Channel 1 XOR Channel 2
ltsNoTrig (9) no source, measure immediately
S (10) not used
ltsPxiExt (11) PXI bus digital trigger signals
lts GenStart (12) start of the Handyscope HS3 generator
ltsGenStop (13) stop of the Handyscope HS3 generator
ltsGenNew (14) each new period of the HS3 generator

Input: -
Output: bySource The current trigger source.

Return value E_NO_ERRORS,
E_INVALID_VALUE
E_NO_HARDWARE

Set the trigger source

word SetTriggerSource(byte bySource)

Description: This routine sets the trigger source of the acquisition system.
Input: bySource The new trigger source.
Output: Return value E_NO_ERRORS,

E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

Note Not all devices support all Trigger Sources. If the Trigger Source is not
supported, the error value E_NOT_SUPPORTED is returned.

38 How can I...

Get the current trigger mode

word GetTriggerMode(byte *byMode)

Description: This routine is used to query the current Trigger Mode.
ltmRising (0) trigger on rising slope
ltmFalling (1) trigger on falling slope
ltmInWindow (2) trigger when signal gets inside window
ltmOutWindow (3) trigger when signal gets outside window
ltmTVLine (4) trigger on TV line sync pulse
ltmTVFieldOdd (5) trigger on TV odd frame sync pulse
ltmTVFieldEven (6) trigger on TV even frame sync pulse

Input: -
Output: byMode The current trigger mode.

Return value E_NO_ERRORS
E_INVALID_VALUE
E_NO_HARDWARE

Set the trigger mode

word SetTriggerMode(byte byMode)

Description: This routine is used to set the Trigger Mode for all channels. See
also GetTriggerMode. Some trigger modes are not available on
all instruments, in that case, the value E_NOT_SUPPORTED will
be returned.

Input: byMode The new trigger mode.
Output: Return value E_NO_ERRORS

E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

Note When edge triggering (Rising or Falling) is selected, the instrument will
not trigger on a constant level DC signal

How can I... 39

Get the current trigger mode for a specific channel

word GetTriggerModeCh(byte byCh, byte *byMode)

Description: This routine is used to get the current Trigger Mode for a specific
channel. Some trigger modes are not available on all instruments,
in that case, the value E_NOT_SUPPORTED will be returned.

Input: byCh The channel to set the trigger mode for
byMode The new trigger mode.

Output: Return value E_NO_ERRORS
E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE
E_INVALID_CHANNEL

Set the trigger mode for a specific channel

word SetTriggerModeCh(byte byCh, byte byMode)

Description: This routine is used to set the Trigger Mode for a specific chan-
nel. See also GetTriggerMode. Some trigger modes are not
available on all instruments, in that case, the value E_NOT_SUP-
PORTED will be returned.

Input: byCh The channel to set the trigger mode for
byMode The new trigger mode.

Output: Return value E_NO_ERRORS
E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE
E_INVALID_CHANNEL

Note When edge triggering (Rising or Falling) is selected, the instrument will
not trigger on a constant level DC signal

40 How can I...

Get the current trigger level

word GetTriggerLevel(byte byCh, double *dLevel)

Description: This routine is used to retrieve the Trigger Level of the selected
channel. The hardware starts to measure when the signal passes
this level. The routine SetTriggerMode can be used to select the
trigger slope.

Input: byCh The channel whose Trigger Level is to be re-
trieved (1, 2, 3, 4).

Output: dLevel The current Trigger Level.
Return value E_NO_ERRORS

E_INVALID_CHANNEL
E_NO_HARDWARE

Set the trigger level

word SetTriggerLevel(byte byCh, double dLevel)

Description: This routine is used to set the Trigger Level. The Trigger Level is
valid if it is between -sensitivity and +sensitivity.

Input: byCh The channel whose Trigger Level is to be set
(1, 2, 3, 4).

dLevel The new Trigger Level in Volts.
Output: Return value E_NO_ERRORS

E_INVALID_CHANNEL
E_INVALID_VALUE
E_NO_HARDWARE

Note The Trigger Level applies only to analog trigger sources, not to digital
trigger sources.

When window trigger is selected, the Trigger Level controls the upper level of
the trigger window.

How can I... 41

Get the current trigger hysteresis

word GetTriggerHys(byte byCh, double *dHysteresis)

Description: This routine is used to retrieve the current Trigger Hysteresis.
The hysteresis is the minimum voltage change that is required to
comply with the trigger conditions. This is used to minimize the
influence of the noise on a signal on the trigger system.

Input: byCh The channel whose Trigger Hysteresis is to be
retrieved (1, 2, 3, 4).

Output: dHysteresis The current Trigger Hysteresis.
Return value E_NO_ERROR

E_INVALID_CHANNEL
E_NO_HARDWARE

Set the trigger hysteresis

word SetTriggerHys(byte byCh, double dHysteresis)

Description: This routine changes the hysteresis, see also GetTriggerHys.
Input: byCh The channel whose Trigger Hysteresis is to be

set (1, 2, 3, 4).
dHysteresis The new trigger hysteresis.

Output: Return value E_NO_ERRORS
E_INVALID_VALUE
E_INVALID_CHANNEL
E_NO_HARDWARE

Upper and lower limits of the hysteresis:

Slope Lower limit Upper limit
rising 0 level + sens

falling 0 sens - level

Note The Trigger Hysteresis applies only to analog trigger sources, not to
digital trigger sources.

When window trigger is selected, the Trigger Hysteresis controls the lower
level of the trigger window.

42 How can I...

The TE6100 has 8 digital external trigger inputs, at the PXI bus, which can be
used to trigger the measurement. It is possible to select which inputs have to be
used and if the inputs have to respond to a rising or a falling slope.

Select the PXI external trigger signals

word SetPXITriggerEnables(byte byEnables)

Description: This routine determines which of the eight PXI external trigger
inputs have to be used. When more than one input is selected,
trigger occurs when one or more inputs become active (logic
OR). Which input state is active, is determined by the Slopes
setting, see next page.

Input: byEnables a bit pattern that defines which inputs have to
be used. Bit 0 represents input 0, bit 1 repre-
sents input 1 etc.
When a bit is high, the corresponding input is
used.
When a bit is low, the corresponding input is
not used.

Output: Return value E_NO_ERRORS,
E_NOT_SUPPORTED
E_NO_HARDWARE

Get the current used PXI external trigger signals

word GetPXITriggerEnables(byte *byEnables)

Description: This routine retrieves the currently selected PXI external trigger
inputs.

Input: -
Output: byEnables a bit pattern that defines which inputs are cur-

rently used. See also the routine
SetPXITriggerEnables

Return value: E_NO_ERRORS
E_NOT_SUPPORTED
E_NO_HARDWARE

How can I... 43

Set the PXI external trigger slopes

word SetPXITriggerSlopes(byte bySlopes)

Description: This routine determines for each PXI external trigger input indivi-
dually whether it should respond to a falling or a rising slope.

Input: bySlopes a bit pattern that defines how the slope settings
for each input is set.
Each bit represents an input, bit 0 represents
input 0, bit 1 represents input 1 etc.
When a bit is high, the corresponding input res-
ponds to a rising slope.
When a bit is low, the corresponding input res-
ponds to a falling slope.

Output: Return value E_NO_ERRORS
E_NOT_SUPPORTED
E_NO_HARDWARE

Get the current PXI external trigger slopes

word GetPXITriggerSlopes(byte *bySlopes)

Description: This routines determines how the slope sensitivities for the PXI
external trigger inputs are set.

Input: -
Output: bySlopes a bit pattern that defines how the slope settings

for each input is set.
Each bit represents an input, bit 0 represents
input 0, bit 1 represents input 1 etc.
When a bit is high, the corresponding input res-
ponds to a rising slope.
When a bit is low, the corresponding input res-
ponds to a falling slope.

Return value E_NO_ERRORS
E_NOT_SUPPORTED
E_NO_HARDWARE

44 How can I...

Control the digital outputs

Set the digital outputs

word SetDigitalOutputs(byte byValue)

Description: The TP112 is equipped with 8 digital outputs, which can be set
individually.
This routine sets the status of the digital outputs.

Input: byValue the new status of the outputs. Each bit repre-
sents an output.

Output: Return value E_NO_ERRORS
E_NOT_SUPPORTED
E_NO_HARDWARE

Get the current status of the digital outputs

word GetDigitalOutputs(byte *byValue)

Description: This routine gets the current status of the digital outputs.
Input: -
Output: byValue the status of the outputs. Each bit represents an

output.
Return value E_NO_ERRORS

E_NOT_SUPPORTED
E_NO_HARDWARE

How can I... 45

Control the Square Wave generator

Get the current square wave generator frequency

double GetSquareWaveGenFrequency(void)

Description: Some instruments have a built-in square wave generator, the
HS508 for example. This routine returns the generator frequen-
cy in Hz.

Input: -
Output: Return value The generator frequency in Hz.

Remarks: Not all instruments have a square wave generator, use the routi-
ne GetSquareWaveGenStatus() to check if a square wave gene-
rator is available

Set the square wave generator frequency

word SetSquareWaveGenFrequency(double *dFreq)

Remarks: The routine sets the frequency. The hardware is not capable of
using every frequency so the hardware chooses the nearest legal
frequency to use, this is the frequency that is returned in dFreq.
See also GetGeneratorFrequency.

Input: dFreq the requested frequency in Hz.
A value "zero" switches the output off

Output: dFreq the frequency that is actually made.
Return value E_NO_ERRORS

E_NO_GENERATOR
E_NO_HARDWARE

Remarks: Not all instruments have a square wave generator, use GetSqua-
reWaveGenStatus() to check if a square wave generator is availa-
ble

46 How can I...

Control the Arbitrary Waveform Generator

The Arbitrary Waveform Generator can operate in two different modes, DDS
mode and Linear mode.

In DDS mode, the generator frequency refers to the frequency of the signal that
is generated. In linear mode, the generator frequency refers to the internal
sampling clock of the generator.

Set the generator mode

word SetFuncGenMode(dword dwMode)

Description: The Handyscope HS3 function generator can be set to either
linear mode or to DDS mode:
lfmDDS (1) DDS mode
lfmLinear (2) Linear mode

Input: dwMode the requested function generator mode
Output: Return value E_NO_ERRORS

E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

Get the current generator mode

word GetFuncGenMode(dword *dwMode)

Description: This routine determines the currently selected function generator
mode.

Input: -
Output: dwMode the currently selected function generator mode

Return value E_NO_ERRORS
E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

How can I... 47

Set the generator signal type

word SetFuncGenSignalType(word wSignalType)

Description: This routine sets the signal type of the function generator.
Input: wSignalType The requested signal type

lstSine (0) Sine wave
lstTriangle (1) Triangular wave
lstSquare (2) Square wave
lstDC (3) DC
lstNoise (4) Noise
lstArbitrary (5) Arbitrary signal

Output: Return value: E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

Remark: When Arbitrary is selected, the contents of the function genera-
tor memory will be "played" continuously. This memory is used
for every signal type, so each time when selecting Arbitrary, use
the function FillFuncGenMemory() to fill the memory with the
requested signal. This does not apply to the Handyscope HS3
generator, which has two independent waveform buffers.

Get the current generator signal type

word GetFuncGenSignalType(word *wSignalType)

Description: This routine returns the currently selected signal type.
Input: -
Output: wSignalType The currently selected signal type

See SetFuncGenSignalType for possible valu-
es for wSignalType

Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

48 How can I...

Set the generator amplitude

word SetFuncGenAmplitude(double dAmplitude)

Description: This routine sets the output amplitude of the function generator
in volts. When the requested amplitude is smaller than zero or
larger than the maximum supported amplitude, E_INVALID_VA-
LUE is returned and the requested value is ignored.

Input: dAmplitude the function generator amplitude in Volts:
0 <= value <= MaxAmplitude

Output: Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

Get the current generator amplitude

word GetFuncGenAmplitude(double *dAmplitude)

Description: This routine determines the currently selected amplitude of the
function generator

Input: -
Output: dAmplitude the function generator amplitude in Volts:

0 <= value <= MaxAmplitude
Return value E_NO_ERRORS

E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

How can I... 49

Set the generator DC Offset

word SetFuncGenDCOffset(double dDCOffset)

Description: This routine applies a DC offset to the output signal. The value is
entered in Volts.

Input: dDCOffset the requested offset in Volts:
-MaxAmpl <= value <= +MaxAmpl

Output: Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

Get the current generator DC Offset

word GetFuncGenDCOffset(double *dDCOffset)

Description: This routine determines the currently selected DC offset value of
the function generator

Input: -
Output: dDCOffset the currently selected DC Offset value

Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

50 How can I...

Set the generator signal symmetry

word SetFuncGenSymmetry(double dSymmetry)

Description: This routine sets the symmetry of the output signal. The symme-
try can be set between 0 and 100. With a symmetry of 50, the
positive part of the output signal and negative part of the output
signal are equally long. With a symmetry of 25, the positive part
of the output signal takes 25% of the total period and the negati-
ve part takes 75% of the total period.
With signal types DC, Noise and Arbitrary, the symmetry value is
ignored.

Input: dSymmetry The requested symmetry value:
0 <= value <= 100

Output: Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

Get the current generator signal symmetry

word GetFuncGenSymmetry(double *dSymmetry)

Description: This routine retrieves the currently selected symmetry of the
output signal.

Input: -
Output: dSymmetry the current symmetry value

Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

How can I... 51

Set the generator frequency

word SetFuncGenFrequency(double *dFrequency)

Description: In DDS mode, this routine sets the output signal frequency of the
generator. In linear mode it sets the sample frequency of the
generator.

Input: dFrequency DDS mode: the requested frequency of the
output signal:
0.001 <= dFrequency <= 2,000,000
Linear mode: the requested frequency of the
sampling clock.
The AWG of the TiePieSCOPE HS801, the
TP801 ISA and the TP801 PCI support setting
the sampling frequency in 15 steps:

38.1, 610, 2441,
9765, 39062, 78125,
156250, 312500, 625000,
1250000, 2500000, 5000000,
10000000, 25000000, 50000000

The Handyscope HS3 AWG supports setting
the sampling frequency at the same frequencies
as the sampling frequency of the acquisition
system of the instrument.

Output: dFrequency the hardware can not support any arbitrary
frequency within the available range. The value
that was actually selected is returned.

Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

Get the current generator frequency

word GetFuncGenFrequency(double *dFrequency)

Description: This routine determines the currently set frequency.
Input: -
Output: dFrequency The currently set frequency in Hz

Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

52 How can I...

Set the generator trigger source

word SetFuncGenTrigSource(byte bySource)

Description: The Handyscope HS3 function generator can be set to be star-
ted by an external TTL trigger signal on pin 21 of the extension
connector, see also the instrument manual, chapter 4.
This routine sets the function generator trigger source:
ltsExtTrig (4) a digital external signal
ltsNoTrig (9) no source, generate immediately
The default value is ltsNoTrig

Input: bySource the requested trigger source
Output: Return value E_NO_ERRORS

E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

Get the current generator trigger source

word GetFuncGenTrigSource(byte *bySource)

Description: This routine determines the currently selected function generator
trigger source

Input: -
Output: bySource the currently selected trigger source

Return value E_NO_ERRORS
E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

How can I... 53

Fill the function generator waveform memory

word FillFuncGenMemory(dword dwNrPoints, word *wFuncGenData)

description: This routine fills the function generator waveform memory with
user defined data. The data must be in unsigned 16 bits values. A
value of 0 corresponds to the negative full output scale, 32768 to
0 Volt and 65535 to the positive full output scale.
The amplitude parameter of the function generator determines
the exact value of full scale. If an amplitude of 8 Volt is selected,
full scale will be 8 Volt.

Input: dwNrPoints the number of waveform points that must be
loaded, see remarks.

wFuncGenData an array of unsigned 16 bits values, containing
the signal that must be loaded. Must contain at
least dwNrPoints samples.

Output: Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

Remarks: The number of samples (dwNrPoints) that can be uploaded to
the generator is different per instrument. The Handyscope HS3
accepts any power of 2 up to 2^17 = 262144. Older genera-
tors' buffer sizes are 1024 samples in DDS mode and 65536 or
131072 samples in linear mode. These instruments automatically
change the generator mode depending on dwNrPoints. See
SetFuncGenMode for information about DDS and linear mode.
When a number of samples is uploaded to the instrument that is
smaller than the preferred value for that instrument, the buffer
will be enlarged to the appropriate value and the additional sam-
ples will be filled with "zero Volt".

When generating a predefined signal, like e.g. a sine wave, the
memory is filled with a sine wave pattern and the generator ope-
rates in DDS mode. So each time one selects signal type Arbitra-
ry, the memory has to be filled again with the user defined pat-
tern. This does not apply to the Handyscope HS3 generator,
which has two independent waveform buffers.

54 How can I...

Set the generator output state

word SetFuncGenOutputOn(word wValue)

Description: For the TiePieSCOPE HS801 and the TP801 PCI/ISA, this routi-
ne switches the output of the function generator on or off.
For the Handyscope HS3, this routine switches on the internal
logic of the function generator, but does not start the generation
of the signal. Refer to SetFuncGenEnable() of FuncGenBurst()
for starting/stopping the generator.

Input: wValue The new output state
0 output is off.

The output of a Handyscope HS3 is floa-
ting at an undefined voltage

1 output is on
The output of a Handyscope HS3 is equal
to the DC offset that is set

Output: Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

Get the current generator output state

word GetFuncGenOutputOn(word *wValue)

Description: This routine determines the current setting of the function gene-
rator output

Input: -
Output: wValue The current setting of the output

0 output is off
1 output is on

Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

How can I... 55

Set the generator enabled state

word SetFuncGenEnable(word wValue)

Description: This routine enables the Handyscope HS3 function generator.
Prior to calling this function, the generator must have been swit-
ched on using SetFuncGenOutputOn().

Input: wValue The new enabled state
0 Stop signal generation, bringing the gene-

rator in idle mode
1 Start continuous signal generation

Output: Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

Get the current generator enabled state

word GetFuncGenEnable(word *wValue)

Description: This routine determines the current setting of the function gene-
rator enabled setting

Input: -
Output: wValue The current setting of the enabled state

0 generator is in idle state, no signal generati-
on

1 generator is in continuous signal generation
state

Return value E_NO_ERRORS
E_NO_GENERATOR
E_INVALID_VALUE
E_NO_HARDWARE

56 How can I...

Generate bursts

word FuncGenBurst(word wNrPeriods)

Description: This routine will make the Handyscope HS3 generator generate
a burst with a requested number of periods of the selected sig-
nal. When the burst is finished, the output will remain at the last
generated amplitude value.

Input: wNrPeriods the requested number of periods to generate.
Any value > 0 will switch on burst mode.
The value 0 will switch off burst mode and
bring the generator back in idle mode.

Output: Return value E_NO_ERRORS
E_NOT_SUPPORTED
E_NO_HARDWARE

Note The output of the generator has to be switched on before burst mode is
selected, using SetFuncGenOutpuOn().

Note The generator has to be placed in idle mode before burst mode is selec-
ted, using SetFuncGenEnabled().

How can I... 57

Use the I2C bus

Some instruments have an I2C connection on the extension connector. Refer to
the hardware manual for the exact pin numbers on the extension connector of
the instrument.

Support of I2C requires instrument drivers of version 6.0.5.0 or higher. If your
driver version is lower, please refer to www.tiepie.nl for the latest version of
the drivers.

To control devices on this bus, the following routines are available.

Get the I2C bus speed

word I2CGetSpeed(dword *dwSpeed)

Description: The I2C bus can operate on two frequencies, 100 kHz and 400
kHz. This routine will read the current bus speed.

Input: -
Output: dwSpeed The bus frequency in Hz

return value E_NO_ERRORS
E_NO_HARDWARE
E_NOT_SUPPORTED

Set the I2C bus speed

word I2CSetSpeed(dword *dwSpeed)

Description: The I2C bus can operate on two frequencies, 100 kHz and 400
kHz. This routine will set the bus speed to the closest valid bus
speed.

Input: dwSpeed The requested bus frequency in Hz
Output: dwSpeed The bus frequency that was actually set, in Hz

return value E_NO_ERRORS
E_NO_HARDWARE
E_NOT_SUPPORTED

www.tiepie.nl

58 How can I...

Write data to the I2C bus

Two routines are available to write data to the I2C bus.

word I2CWrite(dword dwAddress, void * pBuf, dword dwSize)

Description: This routine writes the data that is placed in the memory where
pBuf points to, to a specified address on the I2C bus.
When the data is sent, a stop command is sent to the I2C bus.

Input: dwAddress the address of the device the data is written to
*pBuf pointer to the begin of memory location that

contains the data to be written.
dwSize the size of the buffer in bytes

Output: return value E_NO_ERRORS
E_NO_HARDWARE
E_NOT_SUPPORTED
E_I2C_ERROR
E_I2C_INVALID_ADDRESS
E_I2C_INVALID_SIZE
E_I2C_NO_ACKNOWLEDGE

word I2CWriteNoStop(dword dwAddress, void * pBuf, dword dwSize)

Description: This routine writes the data that is placed in the memory where
pBuf points to, to a specified address on the I2C bus.
When the data is sent, no stop command is sent to the I2C bus.

Input: dwAddress the address of the device the data is written to
*pBuf pointer to the begin of memory location that

contains the data to be written.
dwSize the size of the buffer in bytes

Output: return value E_NO_ERRORS
E_NO_HARDWARE
E_NOT_SUPPORTED
E_I2C_ERROR
E_I2C_INVALID_ADDRESS
E_I2C_INVALID_SIZE
E_I2C_NO_ACKNOWLEDGE

How can I... 59

Read data from the I2C bus

Two routines are available to read data from the I2C bus.

word I2CRead(dword dwAddress, void * pBuf, dword dwSize)

Description: This routine reads the data from a specified address on the I2C
bus and places it in the memory where pBuf points to.
When the data is read, a stop command is sent to the I2C bus.

Input: dwAddress the address of the device the data is read from
*pBuf pointer to the begin of memory location where

the read data will be placed.
dwSize the size of the buffer in bytes

Output: return value E_NO_ERRORS
E_NO_HARDWARE
E_NOT_SUPPORTED
E_I2C_ERROR
E_I2C_INVALID_ADDRESS
E_I2C_INVALID_SIZE
E_I2C_NO_ACKNOWLEDGE

word I2CReadNoStop(dword dwAddress, void * pBuf, dword dwSize)

Description: This routine reads the data from a specified address on the I2C
bus and places it in the memory where pBuf points to.
When the data is sent, no stop command is sent to the I2C bus.

Input: dwAddress the address of the device the data is read from
*pBuf pointer to the begin of memory location where

the read data will be placed.
dwSize the size of the buffer in bytes

Output: return value E_NO_ERRORS
E_NO_HARDWARE
E_NOT_SUPPORTED
E_I2C_ERROR
E_I2C_INVALID_ADDRESS
E_I2C_INVALID_SIZE
E_I2C_NO_ACKNOWLEDGE

60 How can I...

Perform resistance measurements

Some instruments have special hardware to perform resistance measurements.

Setup resistance measurements

word SetupOhmMeasurements(word wMode)

Description: This routine sets the instrument up to perform resistance measu-
rements. Several properties of the instrument are adapted: input
sensitivity, signal coupling, record length, sampling frequency,
auto ranging, trigger source, trigger timeout, acquisition mode.
These are all brought to the required state and should not to be
set to other values afterwards.

Input: wMode 0 switch resistance measurements off
1 switch resistance measurements on

Output: Return value E_NO_ERRORS
E_INVALID_VALUE
E_NOT_SUPPORTED
E_NO_HARDWARE

Retrieve the resistance values

After resistance measurements are switched on, and a measurement is perfor-
med in the normal way, the resistance values can be retrieved by using the
function

word GetOhmValues(double *dValue1, double *dValue2)

Description: This routine retrieved the determined resistance values from the
instrument. This routine also performs averaging on the values,
only after 5 measurements the value is valid.
The calling software is responsible for performing enough measu-
rements

Input: -
Output: dValue1 resistance value for Channel 1

dValue2 resistance value for Channel 2
Return value E_NO_ERRORS

E_NOT_INITIALIZED
E_NOT_SUPPORTED
E_NO_HARDWARE

Deprecated routines 61

Deprecated routines

The following described routines are considered obsolete. They were initially
put in the DLL to perform measurements and collect the measured data. With
the current instruments and computers, these routines will not give the required
performance.

Continuing using these functions is deprecated.

Get the maximum sampling frequency

dword GetMaxSampleFrequency(void)

Continuing using this routine is deprecated, use the routine

GetMaxSampleFrequencyF()

instead.

Start a measurement

word StartMeasurement(void)

Continuing using this routine is deprecated, use the routines

ADC_Start()
ADC_Ready()

instead.

Get all measurement data in Volts

word GetMeasurement(double *dCh1, double *dCh2)

Continuing using this routine is deprecated, use the routine

ADC_GetDataVoltCh()

instead.

62 Deprecated routines

Get one sample of the measurement data, in Volts

word GetOneMeasurement(dword wIndex, double *dCh1, double *dCh2)

Continuing using this routine is deprecated.

Get all measurement data, binary

word GetMeasurementRaw(word *wCh1, word *wCh2)

Continuing using this routine is deprecated, use the routine

ADC_GetDataCh()

instead.

Get one sample of the measurement data, binary

word GetOneMeasurementRaw(dword wIndex, word *wCh1, word *wCh2)

Continuing using this routine is deprecated.

Retrieve the measured data in binary format

word ADC_GetData(word *wCh1, word *wCh2)

Continuing using this routine is deprecated, use the routine

ADC_GetDataCh()

instead.

Deprecated routines 63

Retrieve the measured data in Volts

word ADC_GetDataVolt(double *dCh1, double *Ch2)

Continuing using this routine is deprecated, use the routine

ADC_GetDataVoltCh()

instead.

Get the current sampling frequency

dword GetSampleFrequency(void)

Continuing using this routine is deprecated, use the routine

GetSampleFrequencyF()

instead.

Set the sampling frequency

word SetSampleFrequency(dword *dwFreq)

Continuing using this routine is deprecated, use the routine

SetSampleFrequencyF()

instead.

Get the current trigger timeout value

dword GetTriggerTimeOut(void)

Continuing using this routine is deprecated.

64 Deprecated routines

Set the trigger timeout value

word SetTriggerTimeOut(dword lTimeout)

Continuing using this routine is deprecated.

Note The Trigger Timeout applies only to measurements that are started with
the obsolete routine StartMeasurement().
Measurements that are started using ADC_Start do not react to the
trigger timeout, the user will have to implement that self, by using
ADC_ForceTrig

Deprecated routines 65

If you have any suggestions and/or remarks concerning the DLLs or the manual,
please contact:

TiePie engineering
Koperslagersstraat 37
8601 WL SNEEK
The Netherlands

Tel.: +31 (0)515 415 416
Fax: +31 (0)515 418 819
E_mail: support@tiepie.nl
Website: www.tiepie.nl

mailto:support@tiepie.nl
www.tiepie.nl

TiePie engineering DLL programmer’s manual rev 1.29

